A SATELLITE-BASED RADAR WIND SENSOR

Weizhuang Xin

Radar Systems and Remote Sensing Laboratory
University of Kansas Center for Research, Inc.
2291 Irving Hill Road
Lawrence, Kansas 66045-2969
913/864-4835
FAX: 913/864-7789 OMNET: KANSAS.URSL TELEX: 706352

RSL Technical Report 8760-2

June 1991

Supported by:

NASA Marshall Space Flight Center
Marshall Space Flight Center, AL 35812

Contract NAG 8-796

a4



Yo




Table of Contents

ACKNOWLEDGEMENT .......ccoiitttieeetrmresrierestoneosmnssserermsssarsessssssnnsssssrsresssansorssnssesess i

TABLE OF CONTENTS......ciittiiitnisiiinmnirrnoiisinresersssssnsssimmnss s sesssssenessonsnenrersssens ii

LIST OF FIGURES......cccciitiiirinrriieerersreintneseerisissesssssressassssssssnssesarssssrsssasessennesessereres v

LIST OF TABLES......cicciitiiiiiiirirririrritrse s eesessssssssssrssnrererersrsess s sesssssssssranssssesessenssnsons xiii

ABSTRACT ..o itiiiirirmierarmniriisiirescs s s ressrmssssssnressssensssssssaenessaeeess seaesssonsansone xiv

CHAPTER 1 — INTRODUCTION.......cccvceriirrmrsirrrmesnenssssnmessiinmmessseessranmsessnissrsssssannecsne 1
1.0 RADAR REMOTE SENSING.......ccccrcvrtrsrrenmeirrrersssrassesseresstrersssresssnmsssessnsens

1.1 BACKGROUND......cccomrrmrrerrererersssssarerseessssssssesnnrassssessassassnrsstsesesssssssaserasanses 2

1.1.1 Need for Global Wind Data .........ccccecevrerrrirerrerevesnnreeservnrenesssasens 2

1.1.2 Instruments used for Global Measurement of Wind................... 4

1.1.3 Required Observations Resolutions..........ccveevveeiiririneineensiscerenaens 7

1.1.4 The LAWS from EOS......ccvvrrrrrmrererrvesmsesssnnneereesesssrsrensrsesserisssssasas 8

1.1.5 Effect on Lidars by Clouds.........cccceerenrnereccniareeressvnesesssnnnreessseares 9

1.2 THE DOPPLER RADAR WIND SOUNDER (RAWS).......ccccorrurmmrmmrrerrnnmerereens 10

1.3 DISSERTATION QUTLINE ......ccccorererrerricrersesnnnereressesssnrenserssesssessssssansesnssrss 10

CHAPTER 2 — RADAR BACKSCATTER AND ATTENUATION FROM CLOUDS..... 12

2.1 SCATTERING FROM CLOUDS.......cccovtieeereerimrcreeersnieirrrssrmestessssnsssssressessssnes 12

2.1.1 Definitions of Radar Cross SecCtionS.........ccccvvveeriersererersnrmnnsnnees 12

2.1.2 Scatter From a Single Spherical Particle.........cocecevivumueneenennnnen. 14

2.1.3 Rayleigh Approximation ..........ccecererririsresrrenrerrissesssnsrernersessesnes 15

2.1.4 VOIUIME SCALLET ....cceerervrrrreeerronnrecorsrnrtrressrerissssrersssssnesessessnsesssanns 19

2.1.4.1 Volume Scattering Coefficient..........ccccevvrreririnniicnnnnn, 20

2.1.4.2 Volume Absorption Coefficient .........ccoveureivcrerniieninns 20

2.1.4.3 Volume Extinction Coefficient ........ccccevrmerrereenennennnnens 21

2.1.4.4 Volume Backscattering Coefficient ..........ccoeeeveerennnenns 21

2.1.5 Radar EQUation ........cccccreiccinnisssisccessessrermsssersenssnrsnnsssnnssessssnssse 23

2.2 MODELS OF DROP-SIZE DISTRIBUTION IN CLOUDS......ccccoreccerererirennnae 24

2.2.1 Contents of Clouds.......ccccceirercuemcrecrarmrrrrsrersesessreressesressassssarssenss 24

2.2.2 Droplet Size Distribution of Water Cloud...........c.ccoecvrisnnmnenennenns 25

2.2.3 Ice Cloud ModelIng ........cccccvevvvnerrvesssnnenrvsssnersesssmnrnnssssrersenesenrerasss 30

2.3. COMPUTER SIMULATIONS AND CONCLUSIONS........ccocvmrmmmmmererecsrsnane 31

2.3.1 Computer Simulations of SNR of Radar Echoes.......ccc...ovvricennn. 32

2.3.2 Conclusions and Future Work...........ccccerirrreerenerensensmversressersrnnen 38



CHAPTER 3 — CONCEPTUAL DESIGN AND ANALYSIS OF PERFORMANCE....... 40

3.1 INTRODUCTION .......covtirmrirrtrnirtisnsrnssresnesesssesssensseneseesessssrsssssssessssessesmnssos 40
3.2 BASIC CONFIGURATION OF THE SYSTEM .....ovveeeoieveeeeeeeeeeeeeeeeeoeoeesons 42
3.2.1 System Parameters ..........ccvevveeereevrnencervermsesssssssnsesseseossensesennns 44
3.2.2 Antenna Scan SCREIMES.......c...cvevveeerereeerrrereressresseeenesseeeseeesseos 50
3.2.2.1 Uniform SCan..........cocorurereencersinrenereessnrsnssesesesssnesesssens 51
3.2.2.2 DiSCIEte SCAML.......ovvveeeeneirrieirtineeee e creeseeereesesssesnessenns 53
3.2.2.3 Combination of Uniform and Discrete Scans............. 53
3.2.2.4 SCan TIAJECLOTY .........ocevvrrrrrerensreieecneneeeeeesssesnsssssssnn, 54
3.2.3 Tracking the Doppler Shift Caused by Satellite Motion............ 57
3.2.3.1 Frequency Tracking by a Phase Lock Loop.................. 60

3.3 MEASUREMENT ERRORS OF WIND SPEED DUE TO ANTENNA POINTING
ERROR AND FREQUENCY MEASUREMENT ERROR.......c.oomoeeemeeoeeoon. 65
3.3.1 Basic EQUAHOMNS.........ccoouveininrrennins oo esseeeeesessnesesses e ees s 65
3.3.2 EITOT ANQAIYSIS......cccovinernriienrrereneseensecostrssssnsessssessessssssees oo 66
3.3.3 Error Bound Caused by Frequency Uncertainty........................ 67
3.3.3 Error Due to Uncertanties in Antenna Pointing Angles............ 69
3.3.4 The Total EITOr BOUNA .......coouvevieuieeeeereeseeeseereenesssosensese s 70
3.4 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY ...... 71
CHAPTER 4 — ESTIMATION OF MOMENTS OF POWER SPECTRUM................ 73
4.1 MOMENTS OF SPECTRUM....... e eteeteteeearaatiesaae s s atot b tantaraeanaranrtenrsrrnnnsrane 73
4.2 INTRODUCTION TO RANDOM SIGNALS AND SPECTRAL ANALYSIS.... 74
4.2.1 RaNdom PTOCESS .......c.cccvererrrrererresssrisesesessresseeseessnesensesssessssesssors 74
4.2.2 Power Spectral Density ........ovveveevenirererersenneeeeeemeneesesssesssessens 75
4.3 COMPUTER SIMULATION OF RANDOM SIGNALS.........ccovoevreereeeenonn 76
4.3.1 Shape of the Doppler SPECLIUIL........covevrrereeerererereerseessssssesnsnsn 76
4.3.2 Generating Random Variables with Specific PDFS................... 78

4.3.3 Generation of A Random Process with A Specific

Autocorrelation FUNCHOIL..........vceevrenieceenenieereeessanrsesreseseseens 80
4.3.3.1 Using An ARMA Model.........coccovereeenurreereneeessnesnenssnens 80
4.3.3.2 Using An Inverse Fourier Transform.............c..o.o....... 81
4.4 ESTIMATION OF THE MOMENTS OF THE DOPPLER SPECTRUM.......... 83
I 30 SR L L 0 (14 1 T o 84
4.4.1.1 Estimation of The Mean With Noise Suppression....... 87
4.4.1.2 FFT Method with De-aliasing............cceccveureeeveresuennnnn. 89
4.4.2 The Covariance ESHMALOr......c.uuccveieeeeermeeeererrrssenessssssesmsssnssons 92
4.4.3 The Parametric Methods.............coeveeureeercecennrrrrenroeesssessieeess 96
4.4.4 Random Samples and Spectrum Estimation..............veeveeuenan. 99



4.5 RESULTS OF COMPUTER SIMULATIONS, CONCLUSIONS,

APPENDIX 4. A PROOF THAT THE FFT ESTIMATOR FOR MEAN
IS CONSISTENT........otiimiintrntiennienirnseiiesssens s tssesnsse s sssssessnsessnsssnasssnas

CHAPTER 5 — ALGORITHMS FOR REMOVAL OF RANGE AND
FREQUENCY AMBIGUITIES .........cccovitenmmmmisnecssnmninnesssnissnsssssansesssenssssasesenens

5.1 INTRODUCTION ........ccovvemmmnnniininsnessiniinisesisenoenmmsmasemmsessss s

5.2 INTERPULSE PHASE CODING......ccoccvsmimreerrsenisnnsensmensnemsnsssesssssnsssessones
5.2.1 Radar Ambiguity Functions...........ccccevvinnnnnnnneeniinccnineneenen,
5.2.2 Random-Phase Coding.......cccccivriniisanninininniininsseneiniisiceiennen,
5.2.3 Deterministic Phase Coding .........c.cccivvvvrvinnninvencinnnnnissssniisinenn.

5.3 MULTIPLE PRF AND FREQUENCY AMBIGUITY REMOVAL.....................
5.3.1 Staggered PRF Method- A......ccooiiivimrericnrsrnrnenenrrennsesesssssnseenas
5.3.2 Staggered PRF Method- B ..........coovrvecrcririnnrcrsrnnnmmenemrenescesssssanenees
5.3.3 Random Pulse Position Coding..........coocecrerrirerveeririvenneeerennerneson

5.4 WAVEFORM MODULATION AND AMBIGUITY REMOVAL...........ccccevrenne.
5.4.1 Waveform Modulation Reduces Range Ambiguity.........c.c.coen.e.
5.4.2 AN APPUCAHOML......coverireriiieenereneeineeecerrneeniessessiissnersssrerinesensrssasenes

APPENDIX 5.A. AMBIGUITY FUNCTION FOR
WAVEFORM MODULATION........cocvsrereessnisenisnesenssaniasissnessmssnssssssasssasseces

CHAPTER 6 — CONCLUSIONS AND RECOMMENDATIONS FOR

REFERENCES. .......cccociiieiiinictnniinisenissnnisnissensesssis s asssssssssassssssssossesessns

108






List of Figures

FIGUIE 2.1, e es st s e s s ne et s s e s eesonsesanesa
Mie efficiency factors for scattering and extinction by a water sphere as a

function of drop radius (Fraser et al.,, 1975 Am. Soc. Photogram. [29]).
Horizontal arrows indicate drop radii; a) at 3 GHz; b) at 30 GHz; ¢) at 300
GHz.

FIGUIE 2.2, ...ttt nincssts e e e s saeessanessss e s saan s sner s e e e s nnes
Total attenuation of radio waves by atmospheric gases versus frequency for

various elevation angles (from satellite communication system).

FIGUIE 2.3, .ooiriiicintenininniiiisnissaniinssnenssircssessersanesessssassesssnsssossssses sosessannesesennense
Measured drop-diameter histograms for different kinds of clouds. Note the
change in ordinate scale from part to part. Note significant numbers of
large drops in all but (d). (a) Orographic cloud, Hawaii, p = 0.4 gm-3. (b) Dark
stratus over Hilo, HI, p = 0.34 gm-3. (c) Tradewind cumulus over Pacific near
Hawalii, 615 m above base, p = 0.5 gm-3. (d) Continental cumulus over Blue
Mountains near Sydney, Australia, 615 m above base, p = 0.35 gm-3.

FIGUTE 2.4, oottt s s s sesarresesras s e ssatassanesasesnnesasansenne
Average cloud-drop spectra reported by aufm Kampe and Weickmann for
different cloud types. Note the large number of large drops present in the

cumulus congestus and cumulonimbus clouds.

Figure 2.5. ........... D SO
Distribution of drop radii for summer convective clouds over the U.S. based
on work of Battan and Reitan. Left: 19 fair-weather cumulus clouds with
average of 293 drops cm-3. Right: cumulus congestus for two cases: arrested
growth with 247 drops c¢m-3 and those growing to point where 1950s
weather radar showed echoes with 188 drops cm-3.

18

26

26

27



FIBUTE 2.6, .ottt eecenesr e e e e se e e seeenesmens
Computer simulated drop-size-distributions of three different types of
clouds: 0.3,0.5,and 1.0 gm'3 (thin, medium and heavy).

Average ice crystal spectra in a) C1 Spi, b) AS, ¢) and d) C1 unc, e) Cs, f) Ac and
g Cb cap. The size class is 200 .

FIGUIE 2.8, oottt ssaesrreesae e e eeesss e s e e seeesa e e snann

Spatial distribution of microstructure parameters in cumulus cloud. (a)
drop diameter (um), (b) drop concentration (number cm-3), (c) WL (gm-3).

FIGUIE 2.9, .ottt e ee s et sresas s neene s e s aese st e
Signal to noise ratio of radar echo as a function of cloud penetration (water
content of cloud = 0.3 gm™3); a) orbit height = 300 km; b) orbit height = 830
km.

FIGUIE 2. 10, ettt rree e aeen e e re st snes e s e snesaee st ennesn e seenesnson
Signal to noise ratio of radar echo as a function of cloud penetration (water
content of cloud = 0.5 gm'3): a) orbit height = 300 km; b) orbit height = 830
km.

FIGUIE 2. 11, ettt s st s e s seenessneese e s e e ennesanesansnnen
Signal to noise ratio of radar echo as a function of cloud penetration (water
content of cloud = 1.0 gm™3); a) orbit height = 300 km; b} orbit height = 830
km.

FIGUIE 2,12, .ottt sentenre s e se s sesssassnesamessssmeessnrssae st seneesseesnssmns

(mm® m-3). The return signal is from 1 km depth from the cloud top.

35

37



FIZUTE 3.1, ittt ncrarre e nrarss e re s s s aseessbsraesssraes s osnsnsesesasssressessasnessensnnn
Basic concepts of two beam conical scan: the same area can be viewed
forward and rearward by the antenna with different looking angles for

wind vector component retrieval.

FIGUIE 3.2, .ooeiiieeiereeiecsssessninsesssreessssesenstssassessssenssssssssasssesssssessssensasasassesssssssssnens
Percentage transmission through the earth's atmosphere, along the vertical
direction, under clear sky conditions.

FIGUIE 3.3, .ottt e s sneece s renrrerssaneesessseese s ssanss sessnnsessesennnnnes
Tradeoff between the antenna pointing angle, antenna beamwidths and the
vertical resolution, where ¢ is antenna pointing angle, r. is the edge-to-edge

vertical resolution, and H is the height of the antenna.

FIGUTE 3.4, ooocevcteictssctesssssssasessetessssssesss s sssssssssssesesessnesssesseeneessesssanssesnsessessssas

Mlustration of pulse-pair transmission scheme, and limit on the PRT. T
the PRT, T) is inter-pulse spacing. '

FIGUIE 3.5 ettt e ss e snr e s ssnesssnss s nesosssesssaneerssanessane s s

Antenna scan pattern; a) uniform scanning; b) discrete scanning; c) a
combination of the uniform and discrete scanning.

FIGUIE 3.6. .ottt s e sasssesssesssa s e s b aessasorsrsonsensens
Antenna scan trajectories at 30 deg. and 35 deg. pointing angles with scan
period = 10 s; a) at 300 km orbit; b) at 830 km orbit.

FIGUIE 3.7, ettt v s e sse e e sns s s sns s s ss e s es st aesraesne s seasenns
Functional Block Diagram of Radar Wind Sounder. It shows the two stage
tracking of the Doppler shift caused by satellite motion.

45

51

55



FIGUTE 3.8, ettt sonesee s ee e s e eese e sesameas 59
Equivalent linearized baseband model of a PLL.

FIGUTE 3.9, ittt s s sre s s renr s ree s enne s e en e eesneesenenan 63
Equivalent block diagram of a second order PLL with perfect integrators.

FIBUTE B.10. ..ottt srar e sr e snt s e e eene st sneeneesn s eeane 64
Monte-Carlo simulation of tracking error by a second order PLL with
perfect integrator; a) ensemble average; b) standard deviation of frequency

€ITor,

L ¢ S 83
Example of computer simulated spectrum of a random signal with
spectrum width ¢ = 0.3, mean frequency -0.7, and SNR 10 dB.

FIGUIB 4.2, ettt s se s e sesm st e see e s e e seem e e s 87
Simulation of FFT estimator without de-aliasing and noise suppression,
under the condition 6 = 0.1, SNR = 0 dB, and 10 dB, and the number of runs =
200.

FIBUTE 4.3, oot nes et ssesee e sne sens st s snesesneemenmenn 88
Monte Carlo simulation of FFT estimator with noise suppression; a)
estimate under the condition ¢ = 0.1, SNR = 0 dB, and 10 dB, with 200 runs:;

b} RMS errors as functions of frequency and the spectral width of power
spectrum of signal,

FIBUIE 4.4 oot sene s sbeseae s n e e e s es e e s e e e emememeesemem e e ene 91
FFT Estimator with de-aliasing applied with 6= 0.1, SNR = 10 dB; a) the
plot of ensemble average of estimates; b) plot of RMS error with 200 runs.

For the RAWS parameters the scale would be from -1.75 kHz to + 1.75 kHz.
The frequency shown here is normalized to the Nyquist frequency.



FIGUEE 4.5, ..o s s s s s s s s e s e s s n e sane 95
Computer Simulation of the Covariance Method with 128 pairs of samples ;
a) mean estimate, with inter-pulse-pair spacing = 1, 7, SNR = 10 dB, ¢=0.1;
b) RMS errors with 200 runs. For the RAWS parameters the scale would be
from -1.75 kHz to + 1.75 kHz. The frequency shown here is normalized to
the Nyquist frequency.

FIGUTE 4.6. ouvvvvrrrnetessessrnsessetssnssesesssssessessssssssessessssstsnsssesssssssessesesssssassessesssssasensans 97
Computer Simulation of AR(2) and AR(20) estimators with 200 runs, SNR =
10 dB, o = 0.1, and 128 samples for each run; a) plot of mean estimates; b)
plot of RMS errors. For the RAWS parameters the scale would be from -1.75
kHz to + 1.75 kHz. The frequency shown here is normalized to the Nyquist
frequency.

FIGUTE 4.7, cuoerevreeereuremresnssvaverarsssssssesesessssssessssasesssssasesssessensesesessesasansasosssssssesssesessas 102
Monte Carlo Simulation of FFT estimator with de-aliasing, with 200 runs,
and 128 samples for each run; a) Expectation simulated; b) RMS error as a
function of SNR, and frequency. Both normalized (-1, 1) and RAWS (-1750,
1750) frequency scales are shown.

FIGUTE 4.8. oot st senssssssssssssssssesssssessssssssnensssssssssssssssoassssesssessassssessaeas 103
Monte Carlo Simulation of the Covariance estimator, the spectral width ¢
= 0.3, with 200 runs, and 128 samples for each run; a) Mean estimate for
SNR = 0 dB: b) RMS errors as functions of SNR and frequency.

Figure 4.9. .......... feserer e LRt es e e bt b et e s e e R eR RS sE et RSB RRe R SR eber et Re e bbbt aeaes 104
Monte Carlo Simulation of the Autoregressive , AR(2), method, with 200
runs, and 128 samples for each run; a) Expectation simulated; b) RMS error
as a function of SNR and frequency.

FIGUIE 4.10. covcrimecnitiseiicere e asisst s sisssssss s esbesss e sssssessessasrssssssosassasssas s sasasssenssnes 105
Monte Carlo simulation of FFT estimator with RMS error as functions of
SNR and spectral width. A fixed mean frequency 0.5 is used in this
simulation.



FIGUTE 4. 11, oot ae s e e s st e en e sene s neseeeem e s oo sonea 105
Monte Carlo simulation of the covariance estimator with RMS error as
functions of SNR and spectral width. A fixed mean frequency 0.5 is used in
this simulation.

FIGUTE 4.12, oottt ve e see e st e ceen e e s seeesssnessesmmsseenmesesses e e 106
Monte Carlo simulation of AR(2) estimator with RMS error as functions of
SNR and spectral width. A fixed mean frequency 0.5 is used in this

simulation.

FIGUIE 5.1, iivieriiiieiinrcenrcee e s e rerrernr e s ant e e e s e nresrsrane 118
Examples of ambiguity function: a) ambiguity function for single rectangle
pulse, b) ambiguity function for single linear FM modulated pulse. Absolute
value shown for response function. Ambiguity function is square of
response function, but contrasts are too great to show effectively on a 3-D
graph. All other graphs in Chap. 5 labeled “ambiguity function” are

actually response-function magnitudes.

FIUIB 5.2 ..ottt et es s s se st em s s assese e en s s s 119
Ambiguity function of uniformly spaced pulses in which the pulse shape is
Gaussian and total pulse number is 30.

FIGUTE 5.3, ettt s e e s ee s en e e vanr e essess e soes 119
Ambiguity function of uniformly spaced pulses with random phase coding,
the total pulse number is 30.

FIBUIE 5.4, ottt e srvaes s e e seresseses e sesnen e s s sessenen 120

Ambiguity function of uniformly spaced pulses with Barker phase coding,
the total pulse number is 13,

FIGUIE 5.5, ottt e s esnesesses e snsaeen s s s e st e e s e 122
Ambiguity function for uniformly spaced pulses with -x/4, /4, ..., -n/4, n/4
inter-pulse coding,the pulse shape is Gaussian, and total number of pulses
is 30.



FIBUTE 5.6. ..ooiviviiiiimriimiiiiitt i nsinnraenr s s s rsnnereessesssssnsneeseseseassensananesersres sosssnnnns 126
Simulation of STAGGERED PRF-A method, a) 6 =0.1, SNR=0dB, b) 6=0.3,
SNR = 0 dB. Normalized frequencies are shown.

FIGUIE 5.7. ooveevvrtveeesessisiessssessessssssssssonsssnssssssssssessessssosssssesse assetsssnanessesensssessesssnenas 128
Figure 5.7. Simulation of STAGGERED PRF-B method with T1/Tg = 0.875,

¢ = 0.3, SNR = 0 dB. Nommalized frequency is shown.

FIGUIE 5.8, ettt ess s e s se s b e se s e net e s rnananasenas 131
Configuration of dual-modulation receiver.

FIGUPE 5.9, oo sines e erss st rns e s e n e s vaaseresae e saanessnns 135
Ambiguity function of dual linear FM modulated pulse train. Ty = 0.3 T},

time bandwidth product = 10.0

FIGUTE 5.10. ..vuvverveeereenieessnaresssssesessssssesesessesssssssessasesssesssssssssessssssssessssssasassenssmenenes 136
Cross ambiguity functions, a) as an output of channel I, b) as an output of
channel II.

FIGUTE 5.11. cooeiiiieiininniscssneesnnensans s sessnsesessssesesssessanssesassssssensssssssssnasesssssnsaenesesnsns 138

Simulation of waveforrn modulation method for estimating first moment
with extended frequency range, with one run, o= 0.3, SNR = 10 dB.

FIGUIE 5.12. ettt isses s s s snassssens s sa s e ssbn e s s nae s e an e sranaessrene 139
Ambiguity function for the same pulse train as in Figure 5.10, except
random phase coding was applied.

FIGUEE 5.13. .oeriiveerniree sttt sse e snas s sess s sssssna s s nen e srnesnsnneessannaeon 142
Monte Carlo stmulation of STAGGERED PRF-A method with 100 runs, 6 =
0.3, number of pulse pairs = 128; a) probability of false estimate; b) RMS
error as a function of frequency and SNR.



FIGUTE 5.14. oottt ccrer e cenr s nr e sreee s sesnssss e es s sanevsrns s st e s neeeessmnesesne on
Monte Carlo simulation of STAGGERED PRF-B method with 100 runs, ¢ =
0.3, number of pulse pairs = 128; a) ensemble average of estimates; b) RMS

error as a function of frequency and SNR.

Figure 5.15. .......... e ettt ee et e a s s s TR R gt esve s SR N R R R e e e e e s s TR R et reneteerereerenaanas

Monte Carlo simulation of waveform modulation method with 100 runs, ¢
= 0.3, number of pulse pairs = 128; a) ensemble average of estimates; b) RMS
error as a function of frequency and SNR

FIGUIE 5.16. ...ttt e s sres e s s e e e e s
Monte Carlo simulation of STAGGERED PRF-A method with RMS error
and probability of false estimate as function of spectral width of the signal
and SNR, 100 runs, number of pulse pairs = 128; a) plot of the probabtlity of
false estimate; b) plot of RMS errors.

FIGUIE 5.17. ettt e re e srav s s e ss e e sene e s ns s
Monte Carlo simulation of STAGGERED PRF-B method with 100 runs,
number of pulse pairs = 128; a) plot of the ensemble average of estimates; b)
plot of RMS errors as a function of spectral width of input signal.

FIGUIE 5.18. ..ottt ettt s e e s e s e snesse s sasssess saesnsvamesnmens
Monte Carlo simulation of WAVEFORM MODULATION method with 100
runs, number of pulse pairs = 128; a) plot of the ensemble average of
estimates; b) plot of RMS errors as a function of spectral width of input

signal.

144

145

146

147



List of Tables

Table 1.1.

Table 1.2.

Table 1.3.

Table 1.4.

Table 2.1.

Table 2.2.

Table 2.3.

Table 2.4.

Table 3.1.

Table 3.2.

Table 3.3.

Table 3.4.

Table 3.5.

Global and Synoptic Scale Observational Requirements ................ 5
Characteristics of various spaceborne wind Sensors ........cccoccoceceinne 6
Required Observational Resolution ........ccccceivieininiersrnerenrcecriennennneenn 7
Base Parameters for a idar Wind Sounder ...............oevvvmmmenreeecrcnnnnn. 9
IK12 and Im(-K) for Clouds (Table 4.1, Battan [28]) ...............cnnn. 17
Some Typical Parameters for ColUdS ........cccuvvrrveenrenieniursesrsroreraessene 30
Parameters In Cloud Modeling .......ccceoeeevirimminivenmiin s, 32
Parameters Used in Computer Simulation ......c.ccceveviciiiiiiiiinnennean. 32
Basic Parameters for The Radar Wind Sounder .........ccooveviiviennniiennns 43

Swath Widths For Different Orbits and Antenna

Pointing ANGIES ........ccccvireriiririeeeceririnressenssisssersntinanss it esssasens 48
Roots of equation ..........cceeviiiiiiieiricicirccrerenc e eseees 57
Norm of linear operator A 11n 1, SPACE .oorirericiiir e 68
Norm of non-linear operator (3.38) in 1 _ SPace ........couvevvverivsesnnnnn 70






ABSTRACT

The objective of this study is to investigate the application of Doppler radar
systems for global wind measurement. A model of the satellite-based radar wind
sounder (RAWS) is discussed, and many critical problems in the designing, such as
the antenna scan pattern, tracking the Doppler shift caused by satellite motion, and
backscattering of radar signals from different types of clouds, are discussed along
with their computer simulations.

In addition, algorithms for measuring mean frequency of radar echoes, such
as the FFT estimator, the covarlance estimator, and the estimators based on
autoregressive models, are discussed. Monte Carlo computer simulations were used
to compare the performance of these algorithms. Anti-alias methods are discussed
for the FFT and the autoregressive methods.

Several algorithms for reducing radar ambiguity were studied, such as
random phase coding methods and staggered PRF methods. Computer simulations
showed that these methods are not applicable to the RAWS because of the broad
spectral widths of the radar echoes from clouds. A waveform modulation method
using the concept of spread spectrum and correlation detection was developed to
solve the radar ambiguity. Radar ambiguity functions were used to analyze the
effective signal-to-noise ratios for the waveform modulation method. The result
showed that, with suitable bandwidth product and modulation of the waveform,
this method can achieve the desired maximum range and maximum frequency of
the radar system.






Chapter 1

Introduction

1.0 RADAR REMOTE SENSING

Since the early 1960s, the field of radar remote sensing has grown into an
important technology for scientific research. Radar remote sensing has been
applied in the areas of 1) astronomical studies, 2) military applications, 3)
environmental monitoring, and 4) meteorology. The importance of radar remote
sensing can be attributed to two predominant factors: a) radars do not require the
sun as a source of {llumination, and b) operating in the microwave region, a radar

signal can penetrate fog, clouds, and to some extent precipitation (rain, or snow).

During the past, radar remote sensing has found wide applications in
meteorology, such as storm observation and forecasting. For example, gfound-
based radars are widely used for detecting severe weather and measuring rain-fall
rate [1-2]. Ground-based Doppler radars, most of them operated in very-high
frequency (VHF) and ultra-high frequency (UHF), are used for detecting turbulence,
local wind field etc [3-5]. Recently, S band ground-based Doppler radars were
developed to detect severe weather, precipitation and velocity fields [6]. As global
environmental study becomes more and more important, spaceborne radar systems
are anticipated to become more crucial in monitoring global environment, for

instance, measuring rain-fall rate [7].

In this study, we discuss one potential application for radar remote sensing
— using a spaceborne Doppler radar systemn to monitor the global wind fields.
Numerous ground-based VHF and UHF Doppler radar systems are being used in
measuring turbulence and local wind, and recently some microwave radar systems
were used to measure clouds [8]. However, few spacebome Doppler radar systems

have been studied for global wind measurement purposes.



In this dissertation, we carry out a system study of a spaceborne radar wind
sounder. The major difficulties treated concerning the implementation of a
spaceborne Doppler radar wind sounder include power requirements, antenna scan
pattern, algorithms for measuring mean frequency of Doppler shifts of radar
signals, removal of frequency ambiguity, and compensating the Doppler shift
caused by satellite motion. In addition to theoretical analysis, computer
simulations were used to evaluate the system performance and to compare
algorithms for measuring mean Doppler frequency of the radar signal and
algorithms for removal of radar-frequency ambiguity and range ambiguity.

1.1 BACKGROUND

1.1.1  NEED FOR GLOBAL WIND DATA

The importance of investigating a spaceborne Doppler radar for wind
measurement applications arises from the need for global wind data for both
operational and scientific-research applications. As pointed out in [9], “Knowledge
of the global wind field is widely recognized as fundamental to advancing our
understanding and prediction of the total Earth system. Yet, because wind profiles
are primarily measured by land-based rawinsondes, the oceanic areas (covering
roughly three quarters of the Earth's surface) and many regions of the less-
developed southern hemisphere land areas are poorly observed. The gap between our
requirements for global wind data and their availability continues to widen. For
example, as faster computers become available to model the atmosphere with ever
increasing resolution and sophistication, our ability to do so will be hampered
because of the lack of data, particularly wind profiles.”

An improved understanding of the atmospheric wind fleld is essential for
purposes such as understanding the physics of the atmosphere, weather forecasting,
and many others. One of the most important applications for global wind data is in
numerical weather prediction (NWP), a technique on which modern weather
forecasts are based. Numerical weather prediction utilizes basic hydrodynamic and '
thermodynarmic equations to predict the future states of the environment from the



present states [10]. As an initial value problem, NWP depends critically on the
accurate specification of the state at time zero. If the models used in weather
prediction are correct, then the improvement in weather prediction largely depends
on the observation and measurement of the state of the weather. This view is

generally shared by the numerical prediction community [11].

Significant progress has been made in NWP in recent years, especially with
the development of accurate global numerical weather prediction models, improved
global coverage of the atmosphere provided by satellite observing systems, and with
the development of high speed computers. However, the current weather forecasts
are still not close to the theoretical limit of dynamic predictability, generally
accepted to be about two weeks. Further improvements of weather forecasts are
considered necessary in the following aspects: the observations that provide the
initial data for the models, the objective analysis techniques, and the correctness of

the weather models [12].

The variables used in NWP are temperature, pressure, and wind. The early
NWP models were designed to use only pressure and temperature data. Winds were
derived from the mass observations using the geostrophic relationship. This
relationship assumes that the latitudinally dependent Corlolis force [13] is
balanced by the pressure gradient force. This was a natural choice because pressure
observations were more abundant and more accurate than wind observations.
Recently, however, it has become increasingly clear that wind data are extremely
effective for use in numerical weather prediction. Two reasons for this are
explained by Kalnay, et al. [14]. The first reason is derived from the concept of
geostrophic adjustment. For most scales of importance to numerical weather
prediction, the models effectively retain wind data incorporated into the initial
conditions. Specifically, small-scale pressure-height variations do not result in
small-scale changes in the wind field. Instead, they are rapidly dispersed as gravity
waves. In other words, NWP models accept the wind data more readily than mass
data for scales which can be observed.

The second reason that winds are an extremely effective source of data comes
from the well-known fact that integration of notsy data reduces the effect of random

noise, whereas differentfation enhances the effect of noise. The geostrophic
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relationship implies that wind is proportional to the horizontal pressure gradient.
At Increasingly smaller scales, the geostrophic relationship is often invalid so that
wind becomes an increasingly more accurate measure of atmosphere state than do

the pressure or height measurements.

In addition, the wind observations arerespecially important in the Tropics,
since the quasi-geostrophic balance, present in the mid-latitudes, breaks down. As
a result, the wind field cannot be determined from the pressure or height. Moreover,
a reliable estimate of the divergent component of the wind is necessary to depict the
convective areas in the Tropics that provide a source of energy for the equatorial
regions and at times the mid-latitudes. Therefore, wind measurements are more
important than temperature sounding wherever the winds are not in balance with
the mass field. This means that they are required to faithfully predict the smaller
scale systems at all latitudes and all scales in the Tropics. For the larger scales In
mid-latitudes, temperature data are probably more important, provided they are

accurate to about + 1°C.

Forecast simulations, using wind data in the Tropics and surface wind data
over the oceans, show significant increases in predictive skill. Global climate
modeling (GCM) simulation studies show that an rms wind error of 2m/s 1s
equivalent to an rms temperature error of about 1°C outside of the Tropics. Thus, a
wind-measuring system that could achieve such accuracy would be equivalent to the
best that is possible by any passive temperature measurement system now available

or under consideration [11].

1.1.2  INSTRUMENTS USED FOR GLOBAL MEASUREMENT OF WIND

Today's operational wind-velocity observing systems are basically
implemented in two forms: those mounted on instrumented towers, and mobile
mstrumernts' mounted aboard ships, aircraft, or balloons. These instruments are
very sparse and/or inherently unable to provide temporal and spatial coverage of
the global atmosphere at short time intervals. A unique opportunity to measure
wind with global coverage of the atmosphere is offered by remote-sensing

instruments mounted on spacecraft. Such instruments could provide observations



even in those regions not covered by the conventional ground-based monitoring

network (examples are the oceans and most of the Southern Hemisphere).

Efforts have been undertaken by various operational and research centers to
assess quantitatively, by means of observing-system simulation experiments, the
potential usefulness of a spaceborne global wind sensor and the observational
requirements that must be met to forecast various atmospheric phenomena [12-14].
The cost, complexity, and spacecraft constraints indicate that satellite-based wind
sensors would be most useful in monitoring only the large scale atmospheric
motions driving the weather systems, while smaller scale motions may be more
appropriately resolved by ground-based systems. It has been concluded that global,
twice-daily measurements, with the accuracles and resolutions summarized in
Table 1.1, would result in more accurate medium-range (up to five days) forecasts in
the Northern Hemisphere, over which most of the conventional, ground-based wind
sensors (rawinsonde network) in operation today are concentrated. A major impact
is to be expected for forecasting in the sparsely instrumented Southern Hemisphere, '
where the usefulness of forecasts may be advanced by as much as 24 hours [15].

Table 1.1 Global and Synoptic Scale Observational Requirements

Horizontal resolution 100 kam (meso-a scale)

Vertical resolution 1 kam (0.5 km in the boundary layer and in
the vicinity of the jet stream)

Temporal resolution 6 hour

Accuracy of the wind component 1-2 m/s in the lower troposphere

2-5 m/s in the upper troposphere
Directional accuracy + 10 degree

Recognition that only a space-based monitoring system might have the
capability to provide wind data throughout the troposphere on a global scale has
prompted researchers to consider new remote wind-measuring techniques. A
number of active and passive sensing instruments have been proposed, and some
have already been experimentally tested [16-22]. Their main performance
characteristics are listed in Table 1.2 [15]. It is apparent that most of these
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techniques are unable to satisfy the demands for increasing measurement accuracy

at better horizontal and vertical resolutions. This is the case for all passive sensors

and the scatterometers. On the other hand, excessive size and power consumption

limit the utilization of Doppler radars for wind measurement from clear air in

space.

Table 1.2. Characteristics of various spaceborne wind sensors

Instrument Horizontal ~Vertical Temporal Accuracy Coverage Limitations
(km) (km) W] (m/s)
Passive
High-resolution 125 4 24 <5 Middlefupper Low reolution and
Doppler imagers troposphere;  accuracy; no tro-
Stratosphere  posphere coverage
Electro-optical 150 5 24 <5 Stratosphere  Low resolution
modulation ad and accuracy; no
correlatiors mesosphere  roposphere
coverage
Cloud-motion 20-50 none O1tol 2 10,000 km2  No global cover-
imagers age. No vertial
profiles
Active
Doppler radars 10 0.2 < 0.1 1 In precipitat- Excessive size
ing systems; and power
regional consumption
Scatterometers 25 none 12 +10%  Global Low accuracy, no
oceanic vertical profiles
surface
Doppler lidars 100 0201 12 1to3 Global Immature tech-
troposphere  nology; no
coverage in
cloudy regions

By comparing the performance of different instruments listed in Table 1.2, it
can be concluded that Doppler Lidars are viable instruments able to provide, in the
near future, wind information as a function of height in the troposphere from clear



air regions. The information could be obtained on a global scale except for the
cloudy regions, in a grid form suitable for use in operational meteorology, and with
the required resolutions and accuracies [15]. Since the Doppler radars can also
provide the required temporal and spatial resolutions, they can fill in the gaps in
coverage of lidars caused by clouds and rain. Excessive power requirements for
clear air Doppler radar systems limit the use of radars to wind measurements in

cloudy regions or precipitation systems.

1.1.3 REQUIRED OBSERVATION RESOLUTIONS

Table 1.1 listed the observational requirements for global and synoptic scale
required in numerical weather prediction modeling. Table 1.3 presents the
observational resolution generally required to nowcast or forecast various
mesoscale phenomena, as addressed in a variety of documents (e.g., Federal
Coordinator for Meteorological Services and Supporting Research, 1982; The
National Stormscale Operational and R research Meteorology (STORM)
Program(NCAR, 1984); Shenk et at., 1985; National Environmental Satellite, Data,
and Information Service, 1985). Typical phenomena assoclated with the meso-a,
meso-3, and meso-y scales shown in the table are as follows: meso-o scale
corresponds to the initiation of a mesoscale convective system(MCS) (NCAR, 1984);
meso-f scale describes the the internal structure of the MCS (NCAR, 1984), for
example; and meso-yscale corresponds to small phenomena such as the low-level
wind shear (microbursts).

Table 1.3 Required Observational Resolution

Characteristic Resolution
Meso-o meso-f meso-y
Horizontal 100 km 10 kin 0.1 Ian
Vertical 25mb 10 mb 10 mb
Temporal 1hr 10 min 1 min

The last column in Table 1.3, meso-y, is now generally referred to as
microscale. It follows from Table 1.2 that satellite-based remote sensing platforms

would be most helpful in meeting the temporal and spatial resolution requirements



at the global and synoptic scale and the meso-a scale. For meso-§ and meso-y
phenomena, ground-based systems such as the Doppler radar wind profilers [11]
would be more useful. However, in some situations, geosynchronous-satellite cloud

winds could be useful for meso-p events [15].

1.1.4 THE LAWS FROM EOS

Since the lidar systems are the most promising remote sensing instruments
for global wind measurement in cloud-free areas, a spaceborne Doppler laser
atmospheric wind sounder (LAWS) is under development as part of NASA's Earth
Observing System (EOS) study [9]. This system is planned for a late-90s launch into
low-Earth orbit on an EOS platform. It should make a strong scientific
contribution to our understanding of the Earth as an integrated system.

The LAWS will measure the Doppler shift of line-of-sight components from
aerosol backscattering in the atmosphere with a conically scanned optical
arrangement. Successive measurements from different directions will provide
global coverage of wind-vector profiles throughout the troposphere, on a spatial
scale of 100 km by 100 km at 1 km height intervals, and with an expected accuracy
better than 1 ms-!. Precise management and scheduling of laser pulses should
allow for more detailed examination of fine-scale meteoroclogical features [23].

A set of instrument parameters for the lidar system was selected for a Space
Shuttle orbit of 300 km and a near-polar orbit of 800 km {Huffaker, 1978, 1980). The
parameters selected for use in the computer simulation are shown in the following
table.



Table 1.4 Base parameters for a lidar wind sounder

Altitude

Target volume
(patch)
Nadir angle

Conical scan period
Wavelength
Telescope diameter
Pulse duration

Optical-detector
efficiency

rms Long-term
pointing error
rms Short-term
pointing error
Local Oscillator

Space Shuttle Orbit Near-Polar Orbit
300 km 830 ki
300 x 300 x 20 kin 300 x 300 x 20 km
62°( 600 km reach) 52°(1200 km reach)

7s

19s
9.llum(C02)

1.25m
6.7 us

10%
50 pyrad
2 yrad

50 kHz

1.1.5 EFFECT ON LIDARS BY CLOUDS

A large portion of the globe is normally covered by clouds (about 40%]), a
major obstacle for the operation of LAWS. The cloud distribution is usually divided
into three layers by meteorologists, (except the vertical clouds: Cumulonimbus or
Cumulus). The low cloud layer covers the range from the Earth's surface to 2 km.

These clouds include stratus, stratocumulus, and nimbostratus. The middle layer

clouds are in the 2 km to 8 km range.

altocumulus. The top layer clouds are in the 8 km to 20 km range. These clouds are

called cirrus, cirrostratus and cirrocumulus. These clouds are generally opaque to

These clouds include altostratus and

lidar pulses, except for very thin clouds like cirrus.



The research done by Huffaker indicates that 77% of lidar pulses can
penetrate the upper layer, or down to 8 km [17]. Of those that reach this level, 73%
will penetrate the middle layer. Thus, only 57% of the transmitted pulses are
expected to reach down to the 2 km altitude."Using global cloud statistics, the lidar
system is not expected to be seriously affected provided that the laser prf is
sufficiently high. Tropical storms and the warm sector in typical cyclonic storms
will serfously affect lidar's performance.”

1.2 THE DOPPLER RADAR WIND SOUNDER (RAWS)

The potential for Doppler radar use for global wind measurement
acquisition was considered poor because of the large antenna aperture and power
requirements. However, if the Doppler radar is restricted to measuring the wind
field inside a cloud system, it can provide valuable complementary information for
the lidar system. In addition, such a system can also provide measurements for

rainfall rate and ocean surface winds.

A radar wind sounder (RAWS) is proposed as a multipurpose instrument with
a scanning pattern similar to LAWS that could measure the winds in the cloudy
areas [24]. This radar would serve as a complement to the LAWS, which must work
in clear air or where clouds are thin. Frequencies in X band or Ku band are
appropriate where precipitation is present, but clouds require higher frequencies
because cloud drops are very small. More power is needed for clouds than for rain
alone, but this will be available in future unmanned spacecraft with robust power

sources.

1.3  DISSERTATION OUTLINE

As an initial step in the study of RAWS, this dissertation is intended to
investigate several key problems in implementing a Doppler radar wind sounder.
Several key problems addressed in this study are listed as follows:
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¢ Radar backscatter cross section for water clouds and ice clouds. This
involves modeling of cloud drop-size distributions and water content, and
computer simulation of backscattering coefficients from different types

of clouds.

¢ Conceptual design of the system and an analysis of error bound
* systemn parameters
* tracking of satellite speed

* simulation of signal to noise ratios

s Algorithms for accurately estimating the moments of the frequency

spectrum of radar echoes.

s Algorithms to resolve the frequency ambiguity and range ambiguity

problems.

In Chapter 2, we review, as background, the theory of radar scattering from
particles and clouds, as well as drop-size distributions of water droplets in clouds.
Computer simulations for a conceptual system are performed to calculate the signal

to noise ratios for different types of clouds.

In Chapter 3, we discuss the basic system parameters of a proposed RAWS, as
well as problems of antenna scan and compensation of the Doppler shift caused by
satellite motion. In addition, we carry out the analysis of error bounds for
estimating the wind field for specific situations.

In Chapter 4, various algorithms for estimating the first moment of the
Doppler spectrum are discussed. Computer simulations are used to evaluate the

performance of these algorithms.

In Chapter 5, radar ambiguity functions are used in analysis of algorithms
for removal of frequency and range ambiguities. An algorithm using different
waveform modulations to transmitted pulses is develped to solve the radar
ambiguity problems of Doppler radars. Again, computer simulations are used in
this chapter to compare the performance of the algorithms discussed .
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Chapter 2

Radar Backscatter and Attenuation From
Clouds

2.1 SCATTERING FROM CLOUDS

In this chapter, we review some of the concepts of radar backscattering from
particles, as well as some of the models of drop-size distributions of clouds. We use
computer simulations to estimate signal-to-noise ratios (SNRs) of radar echoes
scattered from some cloud models. The radar system used in the computer
simulation is a spaceborne Doppler radar wind sounder that is discussed in more
detail in Chapter 3. Three types of cloud models were selected in the computer
simulations, according to their mean drop sizes and water contents. The results of
the simulations are presented as functions of signal-to-noise ratio of radar echo,

cloud type, and penetration into the clouds.

2.1.1 DEFINITIONS OF RADAR CROSS SECTIONS

Assume Sj is the power density (W m2) of an electromagnetic wave incident
upon a suspended material particle of geometrical cross sectional area A = 2. A
fraction of the incident power is absorbed by the particle, and an additional
fraction is scattered by the particle in all directions. The ratio of absorbed power Py
to incident power density Sj is known as the absorption cross section
Pa

Qa =5; m2 (2.1)

Furthermore, the absorption efficiency is defined as the ratio of the absorption

cross section to the physical cross section of the particle:

Ea= 9% 2.2)
nr
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In addition to absorption, a portion of the incident power Is scattered by the
particle. The scattering cross-section of the particle, Qg is defined as the ratio of the
scattered power Pg and the incident power density S;

P
Qs =S—f m2 (2.3)

and accordingly the scattering efficiency is defined

=Qs

2.4)
TCI’2

&

Both absorption and scattering reduce the incident power density. The
extinction cross-section Q. denoting the total power removed by the particle, is

defined as the sum of the absorption cross-section and the scattering cross section:

Qe=Qa+ Qs m2 (2.5)

The extinction efficiency &g is defined as

Ee=Eqt &g (2.6)

To calculate the power of the radar echoes, knowledge of the backscatter cross-
section is required. If the back-scattered power density is denoted as Sp, the radar
backscatter cross-section oy, is defined such that the product of op and the incident
power density Si Is equal to the total power radiated by an equivalent isotopic
radiator with power density equal to Sp. Therefore, at a distance R from the
scatterer, the backscatter power density Sp is given as [25]:

ob
=5 1r2 .7)
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From equation (2.7), the backscatter cross-section of the scatteerr is equal to

S
opb = 41:R25—b m (2.8)
i

2.1.2 SCATTER FROM A SINGLE SPHERICAL PARTICLE

Radar cross-sections for objects of almost any shape are difficult to
calculate. However, the solution for the scattering and absorption of
electromagnetic waves by a dielectric sphere of arbitrary radius r was derived by
Mie [26]. The results for the scattering coefficients and absorption coeflicients were

presented in the form of a converging series:

+oo
Es(n, X) =x—222(2k+1)< |a | %+ | by | D 2.9)
=0

and

+oo
betn, V=5 3" (2K + 1) Re(a + by) (2.10)
X" L
=0

where % and n are defined as follows

L. ¢
x= br—qu—k0 erb
and
1/2
"p_recp
n= =
n ()
with
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Ecp
Ecb

the wave number in the background medium

the real part of the relative dielectric constant of the background
medium

the wave length in the background medium

the free space wave length

the complex index of refraction of the particle

the complex index of refraction of the background medium

the complex dielectric constant of particle

the complex dielectric constant of background medium

The terms ak and by, known as the Mie coefficients, are functions of n and %, and

given by Stratton[27] , Battan[28] , and many others. When the background medium
is air, then erph = 1 and Ap = M.

213 RAYLEIGH APPROXIMATION

When the radius of the particles is considerably smaller than the wavelength

of the incident wave, specifically when Inpx | « 1, the Mie expressions for £g and &e

can be expressed by the Rayleigh approximations (in which only the first and

second terms of the Mie solutions are considered) [28]:

£=@/37 K12 (2.11)
and
£, =4 ImCI0+8/3y* IK 12+ ... (2.12)
where
2 g -1
n - C
K= = (2.13)
n2+2 e<:+2
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n is the complex index of refraction of the droplet to the background medium, and e¢

the complex dielectric constant of the droplet relative to the background medium.
From (2.12) and (2.13), the absorption efficiency &5 can be written as

£,=8e - & =4x Im(-K) (2.14)

The corresponding scattering and absorption cross-sections for a single

spherical particle are

2
2
;gxé IK |12 m2 (2.15)
2
Q,= %13 Im(-K) m? (2.16)

The backscatter efficiency &b in the Rayleigh region is [25] :

g=4x’ 1K 12 (2.17)

Therefore, in the Rayleigh region, the backscattering cross-section of an individual
spherical particle of radius r is equal to

5
64 n
op=nrlly =—F—r6 K12 m2 (2.18)

The Rayleigh approximations of scattering, absorption, and backscattering
coeflicients are useful in calculating signal-to-noise ratios for radar echoes. The
only values we need to know are | K| 2 and Im(-K). For water droplets, values of
IK| 2 and Im (-K) are known for various temperatures and wavelengths: IKI2 is
approximately equal to 0.9 for frequencies from 3 GHz to 30 GHz, and temperatures
from 0°C to 20°C, while Im(-K) increases with frequency [25]. Some of the values of
K| 2 and Im(-K) for different frequencies and temperature are listed in Table 2.1
(Table 4.1, Battan[28]).
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The Rayleigh approximation is not always applicable, especially when the
diameter of the particle is large compared with the wavelength; however, it has been
shown that the Rayleigh approximation is valid when Inp,l < 0.5. Since, the
absolute value of refractive index of a water droplet, Iny! decreases with increasing
frequency from 1 GHz to 300 GHz [25], the Rayleigh condition Ingy ! <0.5 can be
satisfied for increasingly larger values of % as frequency increases. The Mie
extinction and scattering efficiencies, &e and &g, are shown in Figures 2.1 a, b and ¢
as functions of drop radius r [29]. The three figures, corresponding to 3, 30, and 300
GHz, also include dashed lines which represent the Rayleigh extinction efficiencies.

Table 2.1 |K| 2 and Im(-K) for Clouds (Table 4.1, Battan [28])

Quality Temperature Frequency (GHz)

°C 10 24.1 35.5
IKI?2 20 0.9270 0.9193 0.9100

10 0.9282 0.9152 0.9045
0 0.9300 0.9055 0.9000
-8 0.8902

Im(-K) 20 0.0188 0.0471 0.06745
10 0.0247 0.0615 0.08565
0 0.0335 0.0807 0.10970
-8 0.1036

The heavy horizontal lines in Figure 2.1 indicate the ranges of drop radii
characteristic of two types of water clouds and a rain cloud with a rain rate of 25.4
mm hr-l. At 3 GHz, the Rayleigh approximation is certainly applicable for the
water clouds and is approximately valid for the rain cloud, while at 30 GHz, the
approximation is valid only for the water clouds. At 300 GHz, the approxdmation is
valid only for the fair-weather cloud.
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Figure 2.1. Mie efficiency factors for scattering and extinction by a
water sphere as a function of drop radius (Fraser et al., 1975 Am. Soc.
Photogram. [29]). Horizontal arrows indicate drop radil; a) at 3 GHz;
b} at 30 GHz; ¢) at 300 GHz.
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Ice clouds may contain particles with radii up to about 0.2 mm, but the
refractive index of ice is smaller than that of water. The combination of these two
factors leads to the conclusion that, for an ice cloud, the Rayleigh criterion is
applicable up to about 70 GHz for computing €e, and up to 200 GHz for computing &y

[25].

214 VOLUME SCATTER

In a resolution volume in clouds, the scatterers (water droplets or ice
particles) are assumed to be randomly distributed within the volume such that there
are no coherent phase relationships between the fields scattered by the individual
particles. Additionally, the concentration of particles is usually small enough to
support the éssumiatlon that the Shadowing of one particle by another may be
ignored. These two assumptions lead to the conclusion that the total scatter cross-
section of a given volume s equal to the algebraic sum of the scatter cross-sections
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of all of the individual particles contained within that volume. Similar statements
may be made regarding the absorption and backscattering cross sections.

2.1.41 VOLUME SCATTERING COEFFICIENT

The volume scattering coefficient xg represents the total scattering cross-

section per unit volume, and has units of Np m3 x m2=Np m-1. The volume-
scattering coefficient kg is given by

r
max

K= J’p(r) Q () dr Npm’! (2.19)

Tmin

where p(r) represents the number of water droplets per-unit volume per increment of
T, Qg Is the scattering cross section for a droplet with radius r. In the Rayleigh

region, equation (2.19) can be expressed in a summation form

N
5
k=2 |k |2 E p? Npm 1 (2.20)
S l4 1
i=1

where N is the total concentration of the droplets in a unit volume of the cloud and
Dj is the diameter of ith droplet in the unit volume.

2.1.4.2 VOLUME ABSORPTION COEFFICIENT

Similar to the volume scattering coefficient, the volume absorption
coefficient is defined as

rmax
K,= J‘p(r) Q, (M dr Npm] (2.21)
I'min

In the Rayleigh region, the absorption coefficient can be expressed as



N
2
i E 3 -1
Ka =2 Im(-K) D. Npm (2.22)

i
i=1

Using the following relationship

N
6 T 2 3 -3
m_ =10 3 D, gm

i=1

where m,, represents the water content in a cubic meter volume in clouds (the
fractional volume occupied by the particles multiplied by the density of water{ = 106
gm3), the volume absorption coefficient can be written as:

-1

X,= 61/A Im(-K) m_ 100 Npm (2.23)

2.1.4.3 VOLUME EXTINCTION COEFFICIENT

For water and ice drops in clouds, the absorption cross-section Qg is much
larger than the scattering cross-section Qg in the Rayleigh region since Qj is
proportional to r3 while Qs is proportional to r®. This fact can be observed from
Figure 2.1. The cloud volume extinction coefficient xe as the sum of xg and 3 is
therefore approximately equal to the volume absorption coefficient x5, and can be

calculated with equations (2.22) and (2.23).

2.1.4.4 VOLUME BACKSCATTERING COEFFICIENT

Similar to the definitions of scattering cross-section and absorption cross-
section, the volume backscattering cross-section is defined as a summation of
backscattering cross sections of individual drops in a unit volume
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5
=10-18 xi‘* K12z m! (2.24)

where Z is the reflectivity factor (a quantity widely used in the meteorology
6 -3

community) in units of mm~ m™.

Backscatter from turbulent fluctuations in the refractive index of the
medium adds to the echo power. However, since the contribution of this type of
backscatter is quite small when compared to the droplet backscatter, it can be
neglected. In addition to the attenuation caused by water droplets in clouds, radio
waves also suffer attenuation caused by absorption of atmospheric gases. This
attenuation is mainly caused by the existence of absorption lines of oxygen and
water vapor in the atmosphere. Oxygen has an isolated absorption line at 118.74
GHz and a series of close lines between 50 and 70 GHz which act as a continuous
absorption band. Water vapor has three absorption lines at frequencies of 22.3 GHz,
183.3 GHz, and 323.8 GHz. As a result, the atmosphere contains a number of
“windows” where the attenuation of radio waves by atmospheric gases is small. The
total attenuations caused by absorption of gases as a function of incident angle
between 20 MHz and 50 GHz are shown in Figure 2.2 [30].

.22
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Figure 2.2. Total attenuation of radio waves by atmospheric gases
versus frequency for various elevation angles (from [30]).

RADAR EQUATION

The weather radar equation can be stated as follows [31]

¢ 2.2 1
P —S—p 122G eqm.—]n
'S[loz‘mz In2 ¢ tr2

h R
-2 I(xg + lcp + xc) dh (2.25)
0

the speed of light

the recetved signal power

the transmitted peak power

the expanded pulse width {f the chirp technique is applied

e S
n n ou

-
[
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= the wavelength

= the horizontal beamwidth
= the vertical beamn width
Lt = the transmitter loss

A
G = the antenna gain
]
¢

Ly = the receiver loss including filters
r = the distance from the radar to the target
xg = the extinction coefficient due to gas
kp = the extinction coefficient due to rain or snow
Kc = the extinction coefficient due to clouds
(in the Rayleigh region, it is equal to xg, the scatter coefficient)
h = the depth of the radar signal pcne&ation into the cloud

= the volume scatter coefficient

The total attenuation caused by the atmospheric gases is dependent upon the
pointing angle of the antenna and the operating frequency. At a pointing angle of 30
- 35 degrees and frequency of 35 GHz, the total loss is less than 0.5 dB, as shown in
Figure 2.2. xp and ¢ are dependent upon cloud type and can be calculated using
equation (2.22) or (2.23).

2.2 MODELS OF DROP-SIZE DISTRIBUTION IN CLOUDS

2.2.1 CONTENTS OF CLOUDS

Cloud droplets are usually formed by water vapor condensing on particulate
which serve as condensation nuclei. Supersaturation (humidity of >100%) is
required to condense water vapor in pure air. For a visible cloud, the droplet's
diameter is > 5 micrometers. The concentration of water droplets in clouds is on the
order of 100 per cubic centimeter and typical radii are about 10 um. This structure is
extremely stable as a rule, and the droplets show little tendency to come together or
to change their sizes except by general growth of the whole population [32]. In
addition to mean radius of droplets, total concentration and water content

per-cubic meter are other important parameters used to classify cloud.s In
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non-precipitating cumulus, a typical value for water content is 0.59 gm-3, with peak
values of about 1g m-3. In stratus clouds, the values tend to be smaller. In

cumulonimbus clouds, the water contents can exceed 5 gm'3.

In addition to water droplets, clouds often contain ice particles when the
temperature is low. However, observations show that the 0°C level in the
atmosphere does not induce a sharp discontinuity in the microstructure of clouds
and precipitation. Clouds have a high probability of containing no ice if the
temperature of the cloud is warmer than -10°C. However, with decreasing
temperature the likelihood of ice increases: below -20°C, more than 90 percent of the
clouds contain ice particles [33].

2.2.2 DROPLET SIZE DISTRIBUTION OF WATER CLOUD

Many cloud physicists have published results of measurements of drop-size
distributions or liquid-water contents, or both, in various types of cloud and fog.
Some of these results are shown in Figures 2.3, 2.4, and 2.5. These examples show
that most drop-size distributions measured in many different types of cloud under a
variety of meteorological conditions exhibit a characteristic shape. Generally, the
concentration rises sharply from a low value to a maximum, and then decreases
gently toward larger sizes; thus, the distribution becomes positively skewed with a
long tail toward the larger sizes. Such a characteristic can be approximated

reasonably well by some analytical formulas [34-35]:
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Hawail, 615 m above base, p = 0.5 gm-3. (d) Continental cumulus over Blue
Mountains near Sydney, Australia, 615 m above base, p = 0.35 gm-3 (From [35])
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NORMAL DI

2
In“{(a/a m)}
(2.26)

1
n(a) = xp -
oV2nra { 202

where a is drop radius, am is the median drop radius and ¢ is the root mean square
(RMS) deviation of the logarithm of the drop radlus.

IFIED GA) B
B -Ba¥
nfa)=Aale (2.27)

where A, B, 8, y are positive parameters. The maximumm of this distribution occurs
at am. an observable quantity which relates the parameters of the distribution to
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A constraint is imposed on equation (2.27) in terms of the total concentration N.

) AB-(B+1)/7

N B+ 1)/ (2.28)

KHRIGIAN AND MAZIN DISTRIBUTION

The Khrigian-Mazin drop-size distribution is a special case of the modified
Gamma distribution [34], which can be expressed as

nla) =Aa?el-Ba (2.29)

The parameters A and B can be related to the first and second moments of the
distribution:

Imax
N= [n(a)da= % (2.30)
min B
and
rmax
<a>=1/N [an(a)da=3/B (2.31)
rmin

where <a> is the mean radius of drop size. Another related quantity of interest is
the water content, W,. For the Khrigian-Mazin distribution,

W
A=145x1018 L& 3 (2.32)
p <a>
WL
N=1.07 x 10° eas3 Number of Drops (2.33)



W, =0.934579x 109 x Np<a>3 gm™3 (2.34)

where<a>isinpm, pising cm3, WL is in gm-3 and N is in number of drops per cm3.

The Khrigian-Mazin distribution is very convenient to be used in computer
simulation of cloud drop size distributions and calculation of water contents of
clouds while the modified Gamma distribution may give overflow problems in
simulating drop-size distributions or some types of cloud. The log-normal
distribution does not have the simple relationships between the total concentration
of droplets, the water contents, and the mean radius like the other distributions.
However, all of the analytical expressions given represent only average
distributions. Individual drop-size spectra may be significantly different. Figure
2.6 shows computer simulated Khrigian-Mazin Drop size distributions for three
different types of clouds. These three models of clouds are classified as thin,

medium, and heavy according to their water contents per-unit volume.
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Figure 2.6. Computer simulated drop-size-distributions of three different
types of clouds 0.3, 0.5, and 1.0 gm3 (thin, medium and heavy).
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In general, when the drop size increases, the concentration of droplets

decreases. The following parameters may be helpful in cloud modeling [32]:

Table 2.2. Some Typical Parameters for Clouds

Droplet Type Mean Radius Concentration of Falling Velocity
(um) Droplets (per liter) cms-1

Typical Cloud Drop 10 106 1

Large Cloud Drop 50 103 27

Typical Rain Drop 1000 1 650

2.2.3 ICE CLOUD MODELING

The drop size distributions of ice crystals in clouds are not as well known as
those for water droplets. With the average size of the ice crystals under many
conditions being considerably large and their shapes trregular and usually far from
spherical, it is difficult to model an ice cloud. Ice crystals in ice clouds can attain
sizes an order of magnitude larger than water droplets found in water clouds. Hence,
the reflectivity factor Zj of an ice cloud may be several orders of magnitude larger
than that of a water cloud with the same liquid water content my.

Pasticle
Spectra
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Figure 2.7. Average ice crystal spectra in a) Ci Spi, b} AS, c}) and d) C{
une, e} Cs, f) Ac and g) Cb cap. The size class is 200 u (From {36]).



The water content of a cloud is typically less than 1 gm-3 and rarely exceeds
4 gm-3. The factor | Ky | 2 for water varies between 0.89 and 0.93 over the 0-20 °C

temperature range and 1-10 cm wavelength range. For ice, |K;|2 is about 0.2,
which is 4.5 times smaller than |Ky |2, but because of the much larger Z; ( in

comparison to Zyj), ice clouds are much more readily detectable by radar than water

clouds.

Figure 2.7 shows some averaged ice crystal spectra in different cloud types
measured by Heymsfield and Knowllenberg [36]. For cirrus clouds, Heymsfield and
Knollenberg measured the following average characteristics:

» ice crystal concentration 1.0 x10% to 2.5 x 104 m™

¢ mean crystal length 6.0 x1072 to 1.0x10"! cm

* ice-water content 0.15 - 0.25 gm'3

¢ radar reflectivity factor 5.0 - 20.0 mm

« precipitation rate 0.5 - 0.7 mm hrl

6 -3

m

2.3 COMPUTER SIMULATIONS AND CONCLUSIONS

Most of the early experiments used 10 cm to 3 cm radars that could only
detect drops larger than a few hundred microns in diameter. More recent high-
power 3-cm radars, and most 1-cm radars, permit the detection of drops with
diameters larger than a few tens of microns. A majority of this work has shown
that the appearance of the radar echo is characteristically related to the cloud
dimensions and temperatures [37-38]. There is a correlation between the number of
echoes and the cloud dimension and top temperature. Larger clouds produced more
radar echoes. Similarly, louds with colder cloud top temperatures also produced
more radar echoes. The explanation for this phenomena is that the large clouds
tend to have a broader spectra of drop sizes and greater Z factors with the same
mean drop size and water content. Cold cloud temperatures indicate that the clouds

may contain ice particles and therefore have large reflectivity factors.
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2.3.1 COMPUTER SIMULATIONS OF SNR OF RADAR ECHOES

Three cloud types, rated as thin, medium and heavy according to their water
contents and mean drop sizes, have been selected in the computer simulations.
Their water contents and mean drop-radii are listed in Table 2.3. The basic purpose
of these computer simulations was to examine the signal to noise ratio of radar
echoes from different cloud types as a function of cloud penetration, frequency and
reflectivity factor.

Table 2.3. Parameters In Cloud Modeling

Type of Cloud Water Content Mean Drop Radius

gm pm
Thin Cloud 03 4.5
Medium Cloud 0.5 7.5
Heavy Cloud 1.0 11.6

A menu-driven simulator was developed, which allows the user to set up
parameters, such as frequency, antenna gain, altitude, signal-to-noise ratio, cloud
models, etc., from popup menus. The parameters for the radar system used in the
simulations are listed in Table 2.4. A detailed discussion of these parameters is
presented in Chapter 3.

Table 2.4. Parameters Used in Computer Simulation

Parameter 35 GHz 10 GHz
Antenna Gain 68dB 57 dB
Beamwidth 0.00122 rad 0.00427 rad
Peak Power 3000W 3000W
Pulse Length (chirped) lus lus
Chirp Gain 20 20
Pointing Angle 30 deg 30deg
Transmitter Loss 1.5dB 1.5dB
Receiver Loss 1.5dB 1.5dB
Noise Figure 4dB 4dB
Im(-K) 0.08565 0.0247
K2 0.9 0.9
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SIGNAL-TO-NOISE RATIO VERSUS CLOUD DEPTHS AND CLOUD TYPES

Using the parameters given in Table 2 4, computer simulations of signal-to-
noise ratio (SNR) versus cloud depth were performed for different types of clouds,
frequencies, and altitudes of orbits. The mean radius of droplets, drop
concefltrat!on. and water contents of a cloud are not independent. An example of
the correlation between these values ishown in Figure 2.8 [35]. From this figure, an
experimental formula was dertved that relates the mean drop size and the water

content in a cloud.
r=116 +13.5* log(W) (2.39)
where r is mean radius, and W is water content. This equation is only used for the

pPurpose of computer simulations of cloud drop-size distribution in this chapter.
The actual clouds may have a much different relationship than (2.39).

{a) (c)

Figure 2.8. Spatial distribution of microstructure parameters in
cumulus cloud. (a) drop diameter (um), (b) drop concentration
(number em-3), (c) W (gm™3) (from [35)).

The results presented in Figures 2.9 to 2.11 show that, for water clouds, the
return signal from cloud tops at 35-GHz is much larger than at 10-GHz, This is due
to the fact that the 35 GHz System has a higher antenna gain and larger backscatter
coeflicients than the 10 GHz system does,



Figure 2.9 shows the signal-to-noise ratio for the “thin” cloud type (like fair-
weather cumulus). In this condition, the radar echo is weak even at 35 GHz: 5 dB
SNR at a 300-km orbit, and below zero dB at a 800 km orbit. For the 10-GHz system,
the signal is too weak to be useful in measurement of wind vectors from clouds.
Figure 2.10 shows the signal-to-noise ratios from a medium cloud, with water
content 0.5 gm'3.; the signal-to-noise ratios increase substantially (about 10 dB) as
the water content increases from 0.3 gm'3 to 0.5 gm‘o-3. In this case, at both the 300-
km and the 830-km orbits, the 35-GHz system is able to provide high enough SNRs
for measuring Doppler frequencies. As for 0.3 gm'3. the 10-GHz system cannot
provide high enough SNR. Figure 2.11 shows the signal return from a heavy cloud
with water content 1.0 gm'3. The SNR's at both frequencies are further increased;
even at 10 GHz the SNR is above O dB for the 300-km orbit.

From these results, it can be concluded that a frequency of 35 GHz or higher
is required for measuring moments of Doppler spectra of radar echoes from a
majority of water clouds, as well as ice clouds. Although the 10-GHz system shows
greater penetrations than the 35-GHz system, especially in the heavy cloud (1.0
gm-3), it is limited for wind measurement in clouds from space because of low SNR
and wide antenna beamwidth (as we will see in Chapter 3). A frequency around 10
GHz can be used for measuring wind in rain. The rain may cause too much
attenuation for 35 GHz or higher. In addition, the 10-GHz radar can also determine
ocean surface wind fields.
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Figure 2.9. Signal to noise ratio of radar echo as a function of cloud
penetration (water content of cloud = 0.3 gm'3); a) orbit height = 300
km; b) orbit height = 830 km.
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Figure 2.10. Signal to noise ratio of radar echo as a function of cloud
penetration (water content of cloud = 0.5 gm'3): a) orbit height = 300
km; b} orbit height = 830 km.
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Figure 2.12. Signal to noise ratio of radar echo as a function of

reflectivity factor Z (mm® m-3). The return signal is from 1 km depth
from the cloud top.

Finally, Figure 2.12 shows the simulated signal-to-noise ratio (SNR) versus
increments of the Z factor. Because the ice cloud is difficult to model, we can derive

some qualitative idea from Figure 2.12 about the signal to noise ratio from ice
clouds. For example, although the | Kj | is about 0.2, 4.5 times smaller than

| Kw | . Z for cirrus (ice) clouds at 35 GHz is 5 to 20 mm® m-3, and the signal-to-

noise ratio is above 20 dB based on Figure 2.12.

2.3.2 CONCLUSION AND FUTURE WORK

The results presented in this chapter demonstrate that, from a SNR point of
view, the 35 GHz Doppler radar can provide high enough SNR's of radar echoes from
clouds for measuring mean Doppler frequency. Although the computer simulations
were based on water cloud models, the results may also be applicable to ice clouds as
discussed in the previous section. However, many other factors were not considered
in the computer simulations and therefore not discussed in this chapter. For
example, we did not consider the cases that the cloud dimensions are smaller than
the antenna beamwidth, or the thickness of clouds are narrower than the vertical



resolution of the radar. In these cases, the signal-to-noise ratios of radar echoes
would be smaller than those simulated in this chapter. Moreover, some of the cloud
models used in the computer simulations may be impractical. These questions need
to be addressed in future studies.



Chapter 3

Conceptual Design and Analysis of
Performance

3.1  INTRODUCTION

A large volume of published literature concemns operations of Doppler
radars for measuring wind speed, weather forecasting, detecting turbulence, etc.
However, there was not conclusive evidence that Doppler radars were able to
measure the wind fields in clouds from space. One major obstacle was that the
radars lacked the power to overcome the weak backscatter from clouds. Although
recently there has been research in the area of using VHF and UHF Doppler radars to
measure wind speeds [39-42], these VHF and UHF systems could not be used in
spaceborne applications because of the excessive size of the antenna and power
requirements. To meet the requirements for vertical resolution and peak power, a
spaceborne Doppler radar for wind measurement should use a high frequency, as
discussed in Chapter 2,

The Radar Wind Sensor (RAWS) is a proposed space-borne Doppler radar to
be used as a multi-purpose instrument for measuring global wind fields in cloud-
covered areas as well as rainfall and surface winds on the oceans. The basic
configuration, as shown in Figure 3.1, has two antenna beams at two fixed elevation
angles ¢1 and ¢2. and the antenna scan patterns are conical. The transmitted pulses
are frequency modulated with compressed pulse widths of about 1 ps. Each antenna
beam transmits signals at two different frequencies: one frequency is at about 10
GHz (X band), and the other is approximately at 35 GHz (Ka band). The frequencies
used on the two antenna beams may need to be slightly different to avoid
interference between received signals. To concentrate on the topic of wind
measurement from non-precipitating clouds, we will primarily discuss the system
configuration and performance for 35 GHz. The 10-GHz system will be covered by
others since it is primarily useful for measurements of wind in precipitation

systems, ocean-surface wind, or rainfall rate. For the lower elevations in rain, a
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requency like 10 GHz is required because of the high attenuation of the 35-GHz
signal traveling through rain.

T A

Figure 3.1. Basic concepts of two beam conical scan: the same area
can be viewed forward and rearward by the antenna with different
looking angles for wind vector component retrieval.
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With circular scanning patterns, areas of hydrometeor activity can be
{lluminated multiple times by the antenna beams when the satellite traverses over
these areas. Since wind vectors are three dimensional, one needs at least three
measurements of the Doppler shifts from different angles to retrieve a wind vector.
In clear air or light clouds, it is often assumed that the vertical components of wind
vectors are uncorrelated with the horizontal components, and that the amplitudes
of vertical components of wind vectors are very small in comparison to the
horizontal components. Under such assumptions, the vertical components of wind
fields can be estimated separately from the horizontal components, or even ignored
in calculation of the horizontal components of wind vectors. Therefore, it is
possible, by measuring the Doppler frequencies of water droplets in these regions
from two different angles, that the horizontal wind vectors in the resolution volume
can be retrieved. However, in heavy cloud regions and precipitation systems, the
vertical wind vectors may not be ignored. In such cases, measurements with three

linearly independent pointing angles are necessary to retrieve the wind vectors.

An assumption concerning the wind field was mentioned in Chapter one: the
RAWS is used to measure the global and meso-a scale phenomena of the
atmosphere. Thus, the measurements made within a 100 km by 100 km area can be

averaged to achieve a more reliable measurement of the wind vector in this area.

In Chapter 2, we addressed the radar backscatter from different types of
clouds. In this chapter, we will discuss the system parameters of RAWS and conduct
an error analysis of the system perforrnance. In addition, we will also discuss
strategies of antenna scan patterns, and a method for compensating Doppler shifts

caused by satellite motion.

3.2 BASIC CONFIGURATION OF THE SYSTEM

The basic parameters of a conceptual system for the radar wind sounder are
listed in Table 3.1. Tradeoffs encountered in selecting the parameters such as
antenna elevation pointing angle, scan period, and scan modes are discussed in
detail below. Two orbit heights were selected for the conceptual design of the radar
wind sounder. One is at 300 ki for space-shuttle orbit, and the other is at 830 km

for near-polar orbit. These orbit selections were referred to in [9]. In addition, some
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major obstacles, such as clutter rejection and limit on vertical resolution, are
identified in the following discussion.

Table 3.1 Basic Parameters for the Radar Wind Sounder

PARAMETER 10 GHz 35 GHz
Altitude of : Satellite 300 km or 830 kan

Target Volume Used in Output 100 km x 100km x 20 km

(from many individual measurements)

Nadir Angle 30° and 35°

PRF 3500 Hz

Pulse Width (Compressed) ' lus
Time-Bandwidth Product 20

Antenna Size (Parabolic) 8m

Antenna Gain 57 dB 68dB
Horlzontal Beamwidth 0.00427 rad 0.00122 rad
Vertical Beamwidth 0.00427 rad 0.00122 rad
Scan Period 10s 10s
Vertical Resolution 2 lan 1 km
Footprint at 30° (300 km) 1.5x 1.7 km 0.5x04km
Footprint at 30° (830 km) 2x5.1 km 1.5x1.2 km
e it due 190013

Peak Power 3000W

Average Power 210w

Recetver Noise Figure 4dB

Transmitter Loss 1.5dB

Recelver Loss 1.5dB

Spacecraft Velocity 7.5 kms-1




3.21 SYSTEM PARAMETERS
OPERATING FREQUENCY

The operating frequencies of RAWS were chosen to be at 10 GHz and 35.5 GHz.
However, from the computer simulation study in Chapter 2, we concluded that
operating frequencies around 10 GHz may be more appropriate for measuring winds
in precipitation, surface winds over the ocean, and rainfall rate. To measure winds
from clouds, frequencies around 35 GHz or higher are needed with current
technology. By observing the transmission windows in the microwave region
presented in Figure 3.2, for frequencies above 20 GHz, windows at frequencies 35.5
GHz, 90 GHz, or 135 GHz are all applicable for measuring wind fields in clouds.
Higher frequencies can increase the SNR of radar echoes from thin clouds and
reduce the antenna size, but they also endure more extinction, and may not be able
to penetrate deep enough through heavy clouds. In this dissertation we will only
discuss the case of 35 GHz. The feasibility of using higher frequencies to measure
wind fields from space may need further investigation.

ANTENNA GAIN, SIZE, AND BEAM WIDTH

To provide the high gain level and narrow vertical beamwidth required for
good vertical resolution, a large antenna is desired. With the technology currently
available, the size of an antenna can be made as large as 1000 wavelengths. We
chose to use an 8 m diameter parabolic antenna in this conceptual design. It is
possible to use this antenna for both 35 GHz and 10 GHz frequencies. For a
uniformly illuminated parabolic antenna, the gains of the antenna for both of these

frequencies can be calculated with the following formula:
Gp=Dy sap &
2
d
= (7?) €ap &t (3.1)

where Gg is the maximum value of gain, D( is the directivity, d is the diameter of the
dish of the reflector, eap is the aperture efficiency of the parabolic antenna, and ¢t is



the antenna efficiency. Typical values for these parameters are eap = 60% - 80%
andet=95% [43]. If we choose eap=70%, £t =95%. and substitute these values in to
(3.1), it follows the antenna gains of G=68 dB at {=35.5 GHz and G = 57 dB at f=10 GHz.
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Figure 3.2. Percentage transmission through the earth's atmosphere,
along the vertical direction, under clear sky conditions. (From F.T.
Ulaby, R. K. Moore, and A. K Fung, 1981 [25]

The beam widths of the antennam can be calculated using the experimental

formula from [43):'

- 30000 (3.2)
814 924

Go

where 014 and 824 are horizontal and vertical beam widths. For a parabolic
antenna, from (3.2), 61d=0624=0.07°=1.22 m rad at 35.5 GHz and

81d=624=0.244°=4.27 m rad at 10 GHz.



ANTENNA POINTING ANGLE

There are tradeoffs in selecting the antenna pointing angles, the vertical
resolution and the swath width. The vertical resolution imposes a limit on the
use of large antenna pointing angles; however, a large pointing angle is desired
for achieving large swath width and reducing measurement errors for

horizontal components of wind vectors. Figure 3.3 shows the limitation on the

Figure 3.3. Tradeoff between the antenna pointing angle, antenna
beamwidths and the vertical resolution, where ¢ is antenna pointing
angle, re is the edge-to-edge vertical resolution, and H is the height of
the antenna.

antenna pointing angle imposed by the vertical resolution. The vertical resolution
not only depends on the pulse length, but also on the antenna pointing angle and
beamwidth. Assume that R is the slant range, ¢; the elevation angle of the antenna,



B the beam width, t the pulse length (compressed, if chirp is applied), then re (the
edge-to-edge vertical resolution) is equal to:

re=p Rsin & +%cos ¢ i=1,2 (3.3)

Equation (3.3) shows that the vertical resolution is a sum of two terms. The first
term is contributed by the antenna beamwidth, and the second term is contributed
by the pulsewidth. For the assumed parameters :

R = 830 km /cosdy

re = lkm

B = 1.22 mrad (35 GHz)
¢y = 35°

the pulsewidth is limited by the following inequality:

Te- P Rsin ¢,
1T€2————— (3.4)
€ COoS ¢i

From (3.4), the pulse length 7 Is limited to less than 1.65 ps. Using the same
parameters as above except an orbit height cf 300 km (space-shuttle orbit), the pulse
length is limited to less than 4.08 pus. However, for f=10 GHz and B=4.27 mrad, the
vertical resolution cannot be less than 1 km in 830-km orbit and the pulse length is
limited to less than 0.56 us (to satisfy 1 km vertical resolution in 300 km orbit).
The primary limit to resolution is the beam width. Hence, a taller antenna (>8 m)
would allow improved vertical resolution.

Another definition of the vertical resolution is called the effective vertical
resolution. It is defined as the -6 dB 3-dimensional contour of the radar
illumination [44]. With this definition, Kozu (1989) pointed out that the effective
vertical resolution for spaceborne radar can be well approximated by [45]:

Toff = '\/(Bh tan ¢, )2+ (% €05 ¢i)2 (3.5)
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Essentially, equation (3.5) imposes the same constraint on the antenna
pointing angle as does equation (3.3). To achieve a small vertical resolution, the
pointing angle of the antenna and the beam width also need to be small. With orbit
heights of 300 km and 830 km, the swath widths are calculated in the following
table

Table 3.2 Swath Widths for Different Orbits and Antenna Pointing Angles

Orbit Height swath width (¢ = 35°) swath width {¢ = 30°)
300 km 420 km 346 km
830 km 1162 km 923 km

Because of the limits on the antenna pointing angle and the vertical resolution, the
swath widths of the radar system are smaller than those of LAWS [9].

CLUTTER FROM ANTENNA SIDE LOBES

Clutter is generally defined as any unwanted radar echo. In the context of
this dissertation, it mainly consists of the echoes from land and sea. The clutter
from the main antenna lobe may not be a problem, since it can be separated from
the received signal by range gating. However, the clutter from the antenna sidelobes
can be a severe problem to the system. This is due to the fact that the backscatter
coefficients of sea and land clutter are much larger than the volume-scatter
coefficients of clouds [46-47]. Even when the gains of the antenna side lobes are 40
dB below the main lobe, the power of the clutter may still be higher than that of the
signal returned. ’{‘o solve this problem, we make some suggestions below:

* Using a narrow pulse width and large antenna pointing angle, so that the
energy of the clutter can be reduced as a result of reduced cross-section of

clutter.

* Designing the antenna such that sidelobes near vertical are very small.

Although a detailed study of clutter rejection is an important issue in the RAWS
study, it is beyond the scope of this dissertation.



PRF SELECTION

With tp the pulse length, rr the range resolution, and c the speed of light, the
range resolution is ry = ctp/2. To obtain a fine range resolution, it is necessary to
have a short pulse length. On the other hand, the frequency resolution requires the
that minimum time of measurement be approximately equal to the inverse of the
bandwidth of the Doppler filter.

A typical radar pulse length is on the order of microseconds, and the target
(wind) speed is on the order of tens of meters per second. To achieve a windspeed
resolution of 1 ms-1, the required measurement-time is about 15 milliseconds at 3
cm wavelength (10 GHz), and 4.3 milliseconds at 0.857 c¢m wavelength (35 GHz).
Because of the required range resolution of 1 km, such long pulses cannot be used in
the design of RAWS. Therefore, unlike a laser radar (lidar) system which may use a
single pulse to measure the Doppler shift, a microwave radar wind sounder must use
a train of pulses to measure the mean Doppler frequency and at the same time meet
the requirements of range and frequency resolutions.

To avoid range ambiguity for evenly spaced transmitted pulses, the pulse
repetition time (PRT) is bounded by the following inequality:

PRT2>2 Ttl'ans + Techo + Tguard (3.6)

where Ttrans is the pulse length of the transmitted pulse (it is expanded pulse width
when the chirp technique is applied); Techo is the round trip delay of the
electromagnetic wave propagating through a 20 km thick cloud; and Tguard is the
time required to compensate for variations of the Earth's surface. For a uniformly

spaced pulse train, with Tirang = 20 ps, Techo = 163 us at 30 deg. antenna pointing
angle, and Tguard = 10s, equation (3.6) leads to the following inequalities:

PRT 2213 s

PRF 4700 Hz 3.7)
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For a train of pulse-pair transmission as shown in Figure 3.4, and discussed later in
chapter 5, the PRT is bounded by

PRT 2 2T + 2Trans + Techo + Tguard (3.8)

Assuming that the pulse width is 20 ps, T1=PRT, T2 = 35 us, and Tguard = 10 ps, it
follows that

PRT 2 283 us

PRF < 3523 Hz

For a quadratic receiver, taking PRF as the sample frequency, the Nyquist
frequency is equal to half of the PRF. Thus, to measure 60 ms"! radial wind speeds,
the minimum PRFs required to satisfy the Nyquist criterion are equal to

4v _ [8000 Hz at f=10 GHz 2
A - 128400 Hz at f=35.5 GHz (3.9)

From (3.9), we can see that there is a very severe frequency-ambiguity problem at 35
GHz; the maximum Doppler shift can be as large as 8 times the Nyquist frequency.
Later in Chapter 5, we discuss the algorithms for reducing frequency ambiguity

problems.

3.22 ANTENNA SCAN SCHEMES

Selection of the antenna scan mode was one of the major problems in the
design of RAWS that we had to investigate. During the measurements of Doppler
frequencies, both the satellite and the antenna beams are in motion, and this may
cause changes in the beam position and antenna pointing angles. Such changes
may introduce errors in estimation of the mean frequency as well as decorrelation
to the returned signals. The changes in antenna pointing angle and beam position
can be reduced or minimized by choosing an optimal antenna scan mode. In this
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Figure 3.4. Mlustration of pulse-pair transmission scheme, and limit
on the PRT. T is the PRT, T} is inter-pulse spacing.

section, three scanning modes are examined: the first is uniform scan: the second is
discrete scan; and the third is a combination of the uniform and the discrete scans.
These three scan schemes require different levels of complexity in hardware and

also introduce various amount of errors into frequency measurements.

3.2.2.1 UNIFORM SCAN

In a uniform scanning scheme, the antenna rotates with a constant angular
speed achieved with a scanning motor or by satellite rotation. However, there is a
severe problem with this simple scanning strategy caused by satellite motion and
antenna beam rotation. This scan mode is illustrated in Fig 3.5a. For example,
assuming the PRF = 3500 Hz and that each measurement contains 256 samples, it
would take 256/3500=73.1 ms for each measurement. However, if the uniform
scanning period Tg=10 s, during one measurement interval the outer beam would
travel 9.6 km and the inner beam 7.96 km with a 300 km orbit. These values are
more than 10 times as large as one footprint of the antenna beams at =35 GHz.
Such a large displacement in antenna beam can cause a serious decorrelation in the
returned signals. In addition, the antenna pointing angle changes nearly 2.6°
during each measurement. Such a large change in antenna pointing angle is bound
to cause a large error in calculations of the wind vectors. The only way to reduce the
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changes in pointing angle and displacement in antenna beam is to lengthen the
scan period. However, because of the required horizontal resolution of measured
wind field, the density of measurements is limited to at least once per 100 km by 100
km. This imposes a limit on the scan period being less than 27 s.

3.2.2.2 DISCRETE SCAN

The second mode, shown in Fig 3.5b, is a discrete scan which assures that the
pointing angle does not change during each measurement. The only decorrelation
introduced is due to the satellite motion; the beam travels 0.54 km during a
measurement of 256 samples. However, there is no antenna pointing error during
the measurement. Strictly speaking, the discrete scheme needs to be semi-discrete,
as the motion of the antenna beam from one position to the next cannot be at a very
high speed. Otherwise, the phase lock loop (PLL) used to track the Doppler shift of
clutter caused by satellite motion may lose track of the Doppler frequency from the
clutter (see section 3.2.3). Considering the size of the antenna the discrete scan is
difficult to implement mechanically. Electronic scan for such a large antenna may
also be too costly and complicated to be achievable. However, use of a set of phased

arrays cannot be ruled out.

3.2.2.3 COMBINATION OF UNIFORM AND DISCRETE SCAN

The third scheme is to focus the beam to the center of the resolution volume
while a measurement {s being made. This strategy can be implemented by a
combination of both electronic and mechanical methods. For example, the
reflector of the antenna can be controlled by a motor, and the antenna feed can be
an electronically scanned phased array. During each measurement, the feed moves
the beam back and forth to focus on the center of the resolution volume, while the
reflector rotates at a uniform speed. This scheme, shown in Fig 3.5¢, can greatly
reduce the decorrelation problem which was inherent in the uniform scan-scheme.
However, the change in pointing angle, during each measurement, can introduce
estimation errors. The angle change can be calculated by the following expression:

v Tm
R

Adp = (3.10)



where A¢ is the angle difference between the initial and final pointing angle in a
measurement of the mean frequency, Ty, is the measurement time, R is the slant
range, and v is the satellite speed. Assuming that the measurement time is Tmy=73
ms (256 pulses), with satellite speed v = 7500 ms™1, then the angle difference is equal
to:

{2 mrad for space shuttle orbit
Ad =~

0.6 mrad for near polar orbit

Such a small change in antenna pointing angles may not introduce any significant
error in retrieving wind vectors as we will see later in section 3.3.3.

In comparison of the three scan modes, we may conclude that the uniform
scan is not a satisfactory scheme; the discrete mode may be too costly to implement;
the combination of uniform and discrete scan is the optimal choice among the

three.

3.2.2.4 SCAN TRAJECTORY

The coordinates of the two beam trajectories in a Cartesian system can be

expressed as:

x=hxtan¢ixcoso)t+vt

y=hxtan ¢, x sin et 1=12 (3.11)

where
¢i = the antenna's elevation angle

= the angular speed of scan
v = the speed of satellite
h = the height of the satellite orbit.

Figure 3.6 presents the trajectories of the antenna beams at orbits of 300 km and
830 kan.
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Figure 3.6. Antenna scan trajectories at 30 deg. and 35 deg. pointing
angles with scan period = 10 s; a) at 300 km orbit; b) at 830 km orbit.



This figure shows that all four trajectories intersect only at very few points. It can
be seen that if the measurements are made at the places where at least two
trajectories intersect, the measurements would not be uniformly distributed.
Namely the marginal area would get more measurements than the central region.
The same problem has also been experienced in the research on LAWS. An adaptive
laser shot pattern was suggested to cope with this problem. This adaptive shot
pattern is designed to control slew rates of the scanner and schedule pulse
suppression in regions of low information potential [23]. A similar method can be
applied to RAWS. In fact, the RAWS has the advantage of two antenna beams which
can lead to a more evenly distributed measurement pattern. However, we leave this

topic for future study.

With the intention of simplifying the analysis of the error bounds of the
estimation of wind speed in the next section, we will consider the measurements are
being made only at places where two beam trajectories intersect. This may not be
necessary in practice, since we have assumed that the wind field being measured is
much larger than the resolution volume. Thus, all of the measurements of Doppler
frequencies in a 100 km by 100 ki area could be freely combined to derive the wind
vectors in this area. However, measurements of Doppler frequency with pointing

vectors close together may give more accurate estimates.

To further simplify the error analysis in the following section, assume that
we only want to make measurements at the intersections of the trajectories of the
antenna beams with the same elevation angle. We can pre-calculate these points
with the following equation

Cn+1in-20=0t n=012,..

2 h tandq cos 6 = vt

or

2wh tandj
——v——cose+29 Cn+Dr=0 n=012,.. 3.12)

where



v = satellite speed
h = orbit height

$¢1 = elevation angle
6 = horizontal angle

With Tg=10 s, ¢,=30° and ¢o= 35°, the above equation can be solved numerically.

Table 3.3 lists the positive angles at which two trajectories intersect. Since the
trajectories of beams are symmetrical about the ground track of the satellite, the
negative angles can be obtained by adding minus signs to the values listed in Table
3.3.

Table 3.3 Roots of equation (3.12)

61inrad ( ¢ = 30°) 6inrad (¢=235
0.307 0.2567
0.79 0.702
1.084 0964
1.3357 1.182
1.38

3.2.3 TRACKING THE DOPPLER SHIFT CAUSED BY SATELLITE MOTION

In the context of calculating the error bound for wind speed we made the
assumption that the Doppler shift due to the satellite motion could be accurately
compensated. In the following, we will discuss a strategy used to compensate this
Doppler shift. As shown in Figure 3.7, which illustrates a simplified block diagram
of the radar system, two stages are used in compensating the Doppler shift by
tracking the mean Doppler frequency of clutter return. In the first stage, the
compensation is accomplished through an inertial navigation system sending
antenna pointing angle information to a control processor. The control processor
tunes a voltage-controlled oscillator (VCO) to counterbalance the Doppler shift
caused by satellite motion according to the information given. This is an open-loop
system; the compensation error is dependent on the accuracy of the information
provided by the inertial navigation system. The second stage compensation is
carried out by a closed loop tracking system. This tracking system can be
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implemented by a digital phase lock loop, an analog phase-lock loop. or a
combination of a Kalman filter and a phase lock loop. In the following, we assume
that the second stage compensation is performed by a second-order analog phase

lock loop.
(\ Transmitter
w
Digital Signal
LNA Processing
Inertial Control
Navigation —1 Processor ] PLL
System

Figure 3.7. Functional Block Diagram of Radar Wind Sounder. It
shows the two stage tracking of the Doppler shift caused by satellite

motion.

Denote the velocity of the satellite, u, the pointing vectors r and the Doppler
shift {p. Asume the satellite is heading in x direction. Then u, r and fp can be

expressed as:

u=vx
r= sind cos$ x + sind sing y + coso z

and
2u (3.13)



Then, the bound of the remaining Doppler frequency after the first-stage

compensation can be expressed as
2v . .
Afp = ' [cos 8 cos ¢ AB + sin 0 sin ¢ A¢]

<% cos{0 - ¢) max( A6, Ap) (3.14)

where A6 and A¢ are remaining antenna pointing errors after the compensation by
the first-stage tracking. If the pointing errors can be reduced to less than 1 mr by the
inertial navigation system of the satellite (according to the LAWS report [9], the
pointing error is on the order of tens of microradians), the bound of Afp, is about 2

kHz at f=35.5 GHz.

In the following, a computer simulation of the error of the dynamic tracking
carried out by a second-order phase-lock loop is completed. Investigation of more
advanced tracking methods is left to further studies.
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Figure 3.8. Equivalent linearized baseband model of a PLL.



3.2.3.1 FREQUENCY TRACKING BY A PHASE LOCK LOOP

As shown in Figure 3.8, a phase lock loop (PLL) consists of a phase detector
(PD), a low pass filter, and a voltage-controlled oscillator(VCO). The low-pass filter
can be first, second, or third order, which is also referred to as the order for the PLL.
The input signal to the PLL is usually modeled as the sum of the signal s(t) and the

noise n{t)
y(t) = s(t) + n(t)

with

s(t) = A(t) sin(wpt + ¢(t))

n(t) = n¢ cos gt + ng sin wgt

where both n; and ng are narrow-band Gaussian noise processes. The phase

detector can be modeled by an ideal multiplier whose output equals

e(t) = Kp [ sin(@(t) + n'(t) )]

with
Kp = Kyco A
Kyco = amplitude of the VCO signal
6 = phase of the input signal
® = phase of VCO
o =0 -3 = phase error

and n'(t) is also a narrow band Gaussian noise which has the following relation with
the input noise nt)

nc(t) A ns(t) A

A cosO + A sin@

n'(t) =



LINEAR APPROACH

When the phase error ® is very small, the PLL can be approximated by a
linear system with the following transfer function

8s) Kveo Kp - >
oy = H® = ) (3.15)
1+ Kvco Kp e

For a second order PLL with perfect integrators, the error transfer function can be
written as [48-49]:

Be(s) 2

s
(s) 2
91(5) 52 +2§mns + o

(3.16)

with £ the loop damping factor, wp the natural frequency. The input noise power to
a phase lock loop 1s equal to

+00

1
PN=5- J Snn(‘*’) do =Nj Bjp (3.17)

L1
oo

where Spn(w) is power spectral density of input signal, BjF is IF bandwidth. The
bandwidth of the phase-lock loop is generally much smaller than the IF bandwidth
and is defined as:

+o0
1 2
Bl=5r J' |H, @ |%de  Hz (3.18)
o0

The SNR in the loop is defined as
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p:—:—: SNR— (319)

where SNR; is input SNR. For more detailed descriptions of these parameters in a
phase-lock loop, one can refer to [48], [50], [51].

LOCK LIMIT, HOLD-IN RANGES

The hold-in range is defined as the input frequency range over which the
loop can sustain a lock status. The hold-in range for a frequency offset of PLL is

shown [48] as

doy=+K . Kp (3.20)

Similarly, the maximum permissible rate of change of input frequency is limited by

Aw = o, (3.21)

These two parameters are important in computer simulations of the PLL since the input
signal cannot have a frequency offset or a change of frequency rate larger than those set by

(3.20-3.21). Otherwise, the loop would lose the tracking.

NON-LINEAR ANALYSIS

Linear analysis is valid when the input phase error is small and the loop
SNR is high. However, to study the dynamic behavior of PLL's, we need to consider
the non-linear properties of the PLL. As an analytical solution is difficult to
achieve for a second or a higher order PLL, we resort to computer simulation for the
tracking problem by the PLL. First, we need to develop a state varlable equation for
a second order PLL. An equivalent function block diagram of a second order PLL
with perfect integrators is shown in Figure 3.9,
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Figure 3.9. Equivalent block diagram of a second order PLL with
perfect integrators.

The corresponding state variable equation is:

dd / dt=-2Lw, [sin® + n'] -x + d6/dt (3.22)

dx/dt=mr21[81nd’+n'l

In the computer simulation of this stochastic system represented by (3.22),
the following parameters are chosen:

dé/dt = 2000 uft) sinwt, input signal to the PLL

where u(t) is a unit step function.

g = angular speed of scan
£ =05
®n = 100
n' = anarrow band Gaussian random process, generated by an
AR(1) filter.



100

ﬁ -

I

S o -

P

0 -

3

3 -100 4

o

2 -

|1

§ -200 4

m -

c -300 -

(-]

° -

=

-400 T — T v T T
0.0 0.1 0.2 0.3 0.4
Seconds
a)
3

N

z

[ =

0

K

>

[}

o

©

o

-

[ =

8

(77

0 v T T T T i r
0.0 0.1 0.2 0.3 0.4
Seconds
b)

Figure 3.10. Monte-Carlo simulation of tracking error by a second
order PLL with perfect integrator; a) ensemble average; b) standard
deviation of frequency error



A 4th-order Runge-Kutta method is used in the simulations. It was shown
that using the Runge-Kutta method in computer simulation of a random system, the
result is equivalent to the definition of Ito stochastic equation [52-54]. Figure 3.10
presents the Monte Carlo simulation. As expected the RMS error of tracking
frequency depends on the SNR in the loop. When the SNR is high the RMS error in
frequency tracking is very small.

3.3 MEASUREMENT ERRORS OF WIND SPEED DUE TO ANTENNA
POINTING ERROR AND FREQUENCY MEASUREMENT ERROR

3.3.1 BASIC EQUATIONS

The Doppler frequencies observed by the radar can be represented as

fDi = zgu_w_;ﬂ or; i=1,2,3 (3.23)
where
uwyw = the velocity of the wind field
ug = the velocity of the spacecraft
uy = the velocity of the phase center of the antenna
ri = the antenna pointing vectors
A = the wavelength

Assume that the Doppler shift due to the motion of the satellite and the rotation of
the antenna can be accurately compensated, and let f; be the measured mean
Doppler frequencies, ¢ be the antenna elevation pointing angles, 6; be the antenna
azimuth pointing angles, and Wy, Wy, Wz be the x,y,z components of the wind

velocity. We can rewrite equation (3.23) in a matrix form:

Fp=AW 2/A (3.24)
where
f L
f3 Wz
rj = sin ¢jcos 6j x + sin ¢ sin Bjy +cos ¢j z (3.26)

with i=1, 2,3 and j=1,2,3



So A has the following form:

sinq)lcose1 sin¢1sin91 cosq>1
A= sincpzcosez sin¢2sin92 cosd, (3.27)
:simb:,'cose3 sin¢3sin93 cos¢3

In practice ¢1 and 6j can only equal to a limited set of values which depend on
the antenna pointing angles, the antenna scan schemes, and the measurement
pattern used in the system. For example, the elevation angle ¢; can only be equal to
30° or 35°.

Furthermore, if we assume that the vertical component is independent of the
horizontal components and can be estimated separately from the horizontal

components, we can write the above matrices in a two-dimensional format.

simt’lc:ose1 sin¢,sin6,
=] . . . (3.28)
-sm¢2c0592 sm¢251n62
and
f W,
1 X
Fn= W= (3.29)
D f2 wy

Notice that the elements in FD of (3.29) are not direct measurements of the

Doppler frequencies. They are equal to the subtraction of the Doppler shifts caused
by the vertical component of the hydrometeor motion from the measured Doppler

frequencies.

3.3.2 ERROR ANALYSIS

The major sources of errors in calculating the wind fields are a) estimation

errors of the mean Doppler frequencies, b) estimation errors of antenna pointing



angles, and c¢) tracking errors of the mean Doppler frequency caused by satellite
motion. In the following section, we assume that the Doppler shift caused by
satellite motion is accurately compensated, and discuss only the error bounds of
wind measurements resulting from antenna pointing errors and estimation errors

of mean Doppler frequencies.

3.3.3 ERROR BOUND CAUSED BY FREQUENCY UNCERTAINTY

When we express the linear equation of (3.24) in a vector form, and under the
assumption that there is no antenna pointing error, the error resulting from

uncertainties in frequency measurements is equal to
W= AT 8Fp1/2 (3.30)

where SFD is the frequency uncertainty and 8Wf is the error in the wind-field

estimates. To derive the upper bound of equation (3.30), we take Alas a linear
operator in a metric space. The definition of the norm of Alina metric space is
equal to

A = max || A7 | (3.31)

llxl|= 1
where x is an any unit vector in the metric space [55]. It is known for a linear
operator in a metric space that the following relationship holds:

laxli<llallllx] (3.32)

where x Is any vector in the metric space. Using this equation, the upper bound of
equation (3.30) can be expressed as:

Il 8w Il < [la™l ] 8E |l A/2 (3.33)



Up to now we did not specify which norm or metric space to be used in this
discussion. The choice of norm often depends upon the objective and analysis, as
well as mathematical convenience. It is usually difficult to find the norm of a
linear operator in an arbitrary metric space. However, if the metric space is chosen
to bel_space, the norm of Al is well derived as the maximum row sum of absolute

magnitudes in A }[55-56]:

N
Al =maxdy Jayi |t i=12..M (3.34)
j=1

where N and M are numbers of columns and rows in A respectively. With |[A™!]]
defined as in (3.34), we can always find a unit vector §Fp such that when §Fp is
substituted into equation (3.33), then the left side of (3.33) is equal to the right side.

Therefore, equation (3.33) is the minimum upper bound of measurement errors in
the |I_space. With values in a limited set of pointing angles 6 given in Table 3.3,

1

from equation (3.34), we have numerically calculated the norm of A" The results
are listed in Table 3.4.
Table 3.4 Norm of linear operator Alin 1, space
01 in rad fla-1]l 62 in rad lla- ]
0.307 6.617 0.2567 6.866
0.79 2.843 0.702 2.69
1.084 4.27 0.964 3.06
1.336 8.57 1.182 4.6
' 1.38 9.2

Therefore, under the assumed condition, from equation (3.33) the upper
bound of the measurement errors of the wind fields due to uncertainty in frequency

measurement is



Il SWf" <461l 8FD” (3.35)

so that if the required wind measurement error is to be less than 1 ms-1, the errors
of mean Doppler frequency measurements need to be less than 23 Hz. This result
may be overly optimistic since it does not take into account errors in the

measurements of the vertical components of wind vectors.

3.3.3 ERROR DUE TO UNCERTAINTIES IN ANTENNA POINTING ANGLES

The error analysis due to the antenna pointing error involves the analysis of
a non-linear operator in a metric space. The analysis of a non-linear operator is
usually much more difficult than that of a linear operator. If the operator is
differentiable {in our case, it certainly is), the errors resulting from small errors in
antenna pointing angle 6 and ¢ can be expressed as [56]:

Il 8w, ||——|| (ZdTA'lw +2de A'189 ) ” (3.36)

=1
where SWa are vectors of errors, 25c|>1 and sej are antenna pointing errors, and M and

N are numbers of different elevation angles and different horizontal angles in
matrix A respectively. Again, by using the relationship [[A x || <]||A || || x || and F

=AW 2/, the above equation can be rewrlitten as

[[sw [l <1 Z l¢ £ a°l 8, +2—A" se) Alfiwll (3.37)

]_

where



N

M
4, d 1 ”
” 2 19, A7 30+ Z deiA 80, (A (3.38)
i=1

j=1

is a non-linear operator. We calculated the norm of this non-linear operator in al__

space with the angles listed in table 3.3. For 3¢ = 0.001 rad and 46 = 0.001 rad, the
norm is listed in Table 3.5.

Table 3.5 Norm of non-linear operator (3.38) in | space

Space shuttle orbit Near polar orbit
61 in rad .1 01 in rad .|
0.307 0.0086 02567 0.0033
0.79 0.0027 0.702 0.0029
1.084 0.0051 0.964 0.0034
1.336 0.0113 1.182 0.006
1.38 00125

According to the value in Table 3.5, the wind error caused by an antenna pointing
error of 0.001 rad can be calculated with equation 3.37:

Il sw || <0.0125 || W ||

3.3.4 THE TOTAL ERROR BOUND

The compound error in one measurement due to both uncertainties in

frequency measurement and in pointing angle can be written as:

l[sw I <all Fpll + B 1l Wi (3.39)

where a and B are constants whose values are dependent upon the antenna pointing

angles, the scan mode, and the measurement pattern as well as the number of
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independent measurements. For a single measurement of a wind vector, under the
condition discussed in the section 3.3.3, a is 4.6A and B is 0.0125, If the second term
in equation (3.39) is ignored, to obtain 1 ms-1 accuracy in measurements of wind
vectors, the frequency errors need to be less than 23 Hz. Notice, from equation
(3.39), that the measurement error resulting from the antenna pointing error is
increased with the true wind speed.

3.4 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER STUDY

a) The second term of equation (3.44) depends upon the true windspeed. When
the windspeed increases, the error in the measurement due to a fixed antenna

pointing-angle error also increases.

b) Throughout the numerical calculations of the norms, we have assumed
that the vertical components of the wind vectors were known. In practice, the
estimation or measurement of vertical velocity certainly contains error. Therefore,
the norm should be larger than those calculated in this chapter.

¢} We have assumed that the Doppler shift due to satellite movemnent can be
very accurately compensated. Otherwise it will cause a bias in the wind

measurement due to the compensation errors.

d) The above error analysis is based upon the errors in measurements of the
mean Doppler frequency and estimation of the Doppler shift of the satellite.
However, these estimation errors and measurement errors are usually functions of
the SNR of the received signal. A final analysis concerning SNR of the system
should be performed.

e) The error analysis conducted above is crude; there may be other factors
which need to be considered in evaluation of the performance. A method used in the
LAWS study may also be applicable to the RAWS: namely error analysis through
computer simulation. In that method, the error is analyzed by using a Monte Carlo
technique; each source of error is considered independently, and values are assigned
to the sources by using random number generators that have the appropriate

distribution functions. This can be used as a topic of future study.
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f) Comparing the prf of a lidar system (about 8 Hz for LAWS} and the prf of a
radar system (3480 Hz in our case), it seems that the radar system has an advantage
of using higher prf than the lidar system. However, for measurement of Doppler
shift, the lidar only needs one pulse while the radar system needs 64 or more pulses.
Thus the radar system only has a slight advantage on prf over the lidar system with
the current technology.






Chapter 4

Estimation of Moments of Power
Spectrum

4.1 MOMENTS OF SPECTRUM
In Doppler radar signal processing, iare often required to estimates of the moments

of the power spectra of radar echoes. An ith moment of the power spectral density of
echoed signal, my, is defined as:

+o00

Jei st at

oo

m, =—————— 4.1

1 +oo

[sth) df

o0

where S(f) is the power spectral density function of the signal. For most weather
radars, only the first three moments are important [44]):

(1) mean power of the signal or zeroth moment which indicates the total
signal energy returned from the target. In wind measurements from clouds, the
zeroth moment is proportional to the echo from hydrometeors, and it may also
reflect the attenuation caused by clouds or precipitation. This information may be
useful for deriving the precipitation rate. However, it does not directly relate to the

winds.

(2) the mean Doppler velocity or the first moment of the normalized power
spectral density is a measure of the radial component of the target velocity. This is
an essential parameter in the estimation of wind vectors, and reflects a weighted
average radial velocity of wind fields.



(3) The second moment is useful for deriving the root-mean-square (RMS)
width of the power spectrum (or spectral width]). It is a measure of the velocity

dispersion, i.e., the shear or turbulence within a resolution volume,

In the study of airborme radar wind sensors, the first moment is the
fundamental variable for deriving the Doppler shift caused by the wind-driven
droplets in clouds. The spectral width derived from the first and the second moment
may be useful for determining the error in estimates of the first moment. In this
chapter, we discuss the algorithms for estimating the first moment of the power
spectral density. Monte Carlo simulations were applied to evaluate the second-
order statistics of the algorithms discussed in this chapter. Since all of the
estimators are functions of the SNR and the spectral width, results of the computer
simulations are presented with the RMS errors as functions of SNRs and spectral
widths., The discussion and the computer simulations are based on normalized
frequencies which range from -1 to 1. However, the results can be easily converted
to a specific application like RAWS, by multiplying the results with the Nyquist
frequency.

4.2 INTRODUCTION TO RANDOM SIGNALS AND SPECTRAL ANALYSIS

4.2.1 RANDOM PROCESS

Before we discuss the algorithms for estimating the moments of the
frequency spectrum, let us briefly review some pertinent concepts of random
processes and their power spectral densities.

STATIONARY PROCESS

A process x(t) is said to be a wide sense(or weakly) stationary process if and
only if both the expected value and the variance of the random process are constants
and its covariance between the values at any two time points, tj and tg, depends
only on (t2-t1), the interval between the time points, and not on the location of the
points along the time axds. Mathematically, we can express these conditions as:
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E(x(t)) = pn
var(x(t)) = 62
R (t].t)= Elxlt)) X (to)) = R_[ta-t;) (4.2)

Radar echoes are often assumed to be stationary random processes; at least over
short periods, most radar echoes do resemble stationary processes. There are cases
in which the radar echoes cannot be considered as stationary processes. One such
example is that the antenna sweeps over several beamwidths during a
measurement, the radar echoes may come from several different resolution
volumes. Therefore, the spectrum of the radar echo may be gradually changing
during the measurement, and may not be considered as a stationary random

process.
DIC PROPE A R

In addition to the assumption of stationarity, we also assume that the radar
echoes are ergodic random processes. A random process x(t) is said to be ergodic if
its time averages equal its ensemble averages. In almost all of the cases, we may
only be concerned with the ergodicities of a few parameters of a random process.
For example, the ergodicities of the mean and the autocorrelation are essential to

spectral analysis.

4.22 POWER SPECTRAL DENSITY
For a stationary random process, the autocorrelation function and the
power spectral density are defined as

R, (0= E(x(t+1) x (1) 4.3)
+00

S = jxgm(t) eJ2mdt 4 (4.4)
o0
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The autocorrelation function &c((‘t) is the Fourier transform of the power spectral

density S{f), and provides the basis for spectral analysis.

As a practical matter, one does not usually know the statistical
autocorrelation function. Thus, it is often necessary to assume that the random
process is ergodic In its first and second moments. The statistical autocorrelation

function of an ergodic random process can be written as:

+T

Hm Lo e x(dt 4.5)
-T

RXX(t )= T—300 ﬁ

From this equation, it can be shown that the PSD of an ergodic random process is

equal to ;

. 1 +T
m fx(t) exp(-j2rft)
T

S() = 10 EY 37 (4.6)

The expectation operator is required in the above equation since the ergodicity does
not couple through the Fourier transform; that is, the limit in the above expression
without the expectation operator does not converge in any statistical sense [57] [58].

4.3 COMPUTER SIMULATION OF RANDOM SIGNALS

4.3.1 SHAPE OF THE DOPPLER SPECTRUM

There are two important parameters in describing a stationary random
process; one is the probablility density function; and the other is the power-spectral-
density function. A radar echo consists of the sum of the return signal and noise.
The noise is often assumed to be white and Gaussian. Since the radar echoes from a
resolution volume are from multiple scatterers, it is reasonable to assume that the
radar echoes have Gaussian probability distributions as implied by the central
limit theorem. Hence, the power of a radar echo should have an exponential
distribution.
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The shapes of spectra of weather-radar echoes are influenced by both the
shapes of the transmitted pulses and the antenna patterns. If we assume that both
the shapes of transmitted pulses and the radar pattern can be approximated by
Gausslan functions, the shapes of spectra of weather echoes can be approximated by
the convolutions of two Gaussian functions, and, should also resemble Gaussian
functions. In addition, as the Fourier Transform of a Gaussian function results in a
Gaussian function, the autocorrelation function of a weather radar echo is often
assumed to be Gaussian. In the following discussion, we will always make the

assumption that the shape of the spectrum of a weather radar echo is Gaussian.

In the computer simulation of weather radar echoes, besides the shapes of
spectra, we also need to consider the spectral widths of the radar echoes. In the case
of RAWS, because of the high speed of the spacecraft, the spectral widths of the
weather radar echoes are determined primarily by the beamwidth of the antenna.
For example, as derived in Chapter 3, the 3 dB bandwidth of the Doppler frequency
of a returned radar signal at 35 GHz is roughly equal to

[ ]

A 2v
BD=Tﬁ=r= 1875 Hz

where v is the velocity of the spacecraft, A is the wavelength, B is the antenna
beamwidth and L is the antenna aperture. The ratio of the bandwidth of the Doppler
frequency to a 3500 Hz PRF is equal to

B
D 1875
26y 3500 = 03

In a pulsed-Doppler radar, the PRF acts like a sampling frequency to the weather
radar echoes. Therefore, from the above calculation, the bandwidth of the Doppler
frequency of radar echoes is approximately half of the Nyquist interval. If we
consider that turbulence, wind shear, motion of the antenna beam, and target drift
all would add decorrelation eflects to the returned signals and broaden their
spectra, the actual radar-signal spectral widths may be greater than calculated



above. A quantitative study of the effect of antenna scan rate on signal

decorrelation can be found in [59].

4.3.2 GENERATING RANDOM VARIABLES WITH SPECIFIC PDFS

In computer simulations of radar signals, it is often necessary to generate
random processes with determined probability density functions and correlation
functions. In this section, we review some of these methods for generating a random
variable with a specified probability density function (PDF). In the next section, we

discuss how to generate a random process with a specified autocorrelation function.

Generating random variables with a specific PDF often starts with
generating a series of uniformly distributed random numbers. Since the computer-
generated random sequence is quasi-random, the random-number generator should
be chosen according to the application. For Monte Carlo simulations with several
hundred runs, and each run requiring thousands of samples. we need to choose a
random number generator which produces statistically uncorrelated numbers with
a very long cycle. For example, in the simulations performed in this chapter, the
random number generator is chosen from [60], and this generator has a cycle of 230,

Generating random variables other than those with uniform distributions
can be achieved through performing transformations on uniformly distributed
random variables. It is known that if two random variables x and y are related by
the expression x = {ly), then the PDF of y is equal to [61]:

ply) = p{x)

dx
a‘;l 4.7)

In particular, {f x is a uniform random variable one can obtain the desired random
variable by the transformation y=F~1(x), where F(y) is the distribution function of y.

For generating some random variables, multi-variable transformations may be
needed. Let x; and x9 be uniform random variables and y; and yo be random

variables with the desired probability distributions. Then the joint PDF of y; and
y2 is
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9(x1, x2)
a(y1. y2)

p(y1, y2) dx dy = p(xy, x3) dxdy (4.8)

where

dlx], x9)
————| is the Jacobian determinant.
daly1. y2)

GENERATING A GAUSSIAN DISTRIBUTION

An important example of the use of variable transformations is the Box-
Muller method for generating random deviates with a normal distribution,

2
! ey /202 dy

ply)dy = \Zrno (4.9)

Consider the transformation between two uniforn random variables on {0, 1), X1 Xg
and two quantities y, yo,

Y1=1 , -2In x, cos (2nx,)
Yo =1 , -2 In x,; sin (2mx,) (4.10)

Equivalently we can write

-1
. - e[ L+ y3)|
B/
x2=% arctanf 4.11)

Now the Jacobian determinant can readily be calculated:

(x]. X2) - e['%—(Y? + yi)]

a(y1. y2)
(4.12)



Therefore, y; and yo all have normal distributions as a result of the

transformation.

GENERATING AN EXPONENTIAL DISTRIBUTION

The power of a weather radar signal is often exponentially distributed. It
can be generated from a uniform distribution. Let x be a uniformly distributed
random variable and y be an exponentially distributed random variable., With the
transform x = F(y) = exp(-y), y has an exponential distribution.

GENERATING A RAYLEIGH DISTRIBUTION

The voltages of weather signals generally have Rayleigh distributions,
which can be expressed as follows;

2
ply) = %e'y /20 (4.13)

2
Therefore, with the transform x = F(y) = ey / 20, y= V20(-In(x)) has a Rayleigh
distribution.

4.3.3 GENERATION OF A RANDOM PROCESS WITH A SPECIFIC
AUTOCORRELATION FUNCTION

4.3.3.1 Using An ARMA Model

A large number of random processes can be classified as certain
autoregression and moving-average processes with p as the order of autoregression
and q as the order of moving average. Such autoregression and moving average
processes are usually denoted as ARMA(p.q). Even some random processes, which
cannot be classified as ARMA(p.q), may be approximated by certain ARMA(p.q)
models. Therefore, we may use an ARMA model to simulate the weather radar
echoes. The spectra of radar signals returned from weather targets are expected to be
Gaussian in shape. We may use an autoregression model, AR(p), to approximate
such a process.



An ARMA(p.q) modeling only gives the desired autocorrelation function of
the process. To make the random process have a specific probability distribution
often requires a non-linear transformation after the ARMA modeling. In practice,
such a non-linear transformation is often difficult to implement. A detailed study
of such methods for generating random processes with specified spectra and
probability distributions can be found in [62] .

4.3.3.2 Using An Inverse Fourler Transform

Here, we describe a method using an inverse FFT to generate weather-like
signals. This method was discussed in [63] and [64]. We applied this method in
generating weather radar echoes with Gaussian power spectral densities and
exponential probability distribution functions in the computer simulations of this
chapter. As discussed in section 4.2.2, a weather radar signal normally has a
Gaussian-shaped spectrum, and its power is exponentially distributed. The detailed
steps for generating weather signals with an inverse FFT method are depicted below:

* The first step is to specify the power spectrum of the weather radar echo
from a target by

1 _ 2 2
G, = ¢"(fn - fm)"/20 n=0,1,...M-1 4.14)

V2no

where
fn = n th discrete frequency
M = total number of discrete frequencies
Gn = the discrete spectral coefficient corresponding to fp
fm = the power-weighted mean frequency
o = Is the standard deviation of the spectrum, which is defined as
spectral width.

In all the computer simulations of this chapter, fn and fi, were normalized with a
Nyquist interval [-1.0, 1.0]. When fp or fi; are not in the range of -1.0 to 1.0, aliasing
occurs and the spectrum folds into the interval [-1.0, 1.0].
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* Second, we assume the additive noise present in the real signal is white, i.e.,
it has a constant spectral density, and also consider that both simulated signal and
noise powers must be exponentially distributed to represent the weather signal.
Then, we can write the power spectral coefficient for frequency fy as:

Sn = -Inxn) K Cn +EN] (4.15)

where 0 < X, <1 and is uniformly distributed. PN, the total noise power, can be

arbitrarily set to unity. Kis equal to

K= M

2 Gn
n=0 (4.16)

* The third step is to decompose the power spectrum into its real, Ap. and
imaginary, By, components, adhering to the requirement that the phase angles of
the sinusoid comprising the spectrum (i.e., the phase spectrum of the time signal) be
uncorrelated and uniformly distributed between (-x,x).

1/

n 2 cos(2ryp,)

Bph= Srlllzsin(mryn) (4.17)

where yp, is a random variable uniformly distributed between(0,1). Notice that S1/2
has a Rayleigh distribution, while A;, and By, have Gaussian distributions.

* The final step is to generate the complex time signal by performing an
inverse Fourier transform of A and By,

M-1

Zn=I+1Qn= Z(Ai +jB;) ol2rni/M (4.18)
i=0

where M is the number of samples.
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Figure 4.1. Example of computer simulated spectrum of a random
signal with spectrum width ¢ = 0.3, mean frequency -0.7, and SNR 10

dB.

An example of computer simulated weather radar echo is shown on Figure
4.1. The frequency is normalized to [-1,1]. The mean frequency and the standard
deviation are -0.7 and 0.3 respectively. In the computer simulations of this chapter,
the total number of sample, M, is chosen as 1024. ‘

4.4 ESTIMATION OF THE MOMENTS OF THE DOPPLER SPECTRUM

The algorithms for estimating of the first moment of the power spectral
densities of radar signals can be classified into the following following three
categories:

» Algorithms based on the Fast Fourier Transform(FFT) of the signal.

¢ Algorithms based on the covariance function of the signal (also called
pulse-pair method).

* Algorithms based on parametric modeling, such as the autoregressive (AR)
and the moving average (MA) models. Only the autoregressive method
will be discussed in this chapter.

The algorithms based on the FFT method and the ARMA-model method
require evaluation of the power spectral density (PSD) of the return signal first, and
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subsequently the mean of the PSD. The algorithms based on covariance function do
not require the calculation of the PSD of the signal. The ARMA methods may not be
as efficient as the covariance and the FFT methods when the order of the model is
high. In the following sections, we will discuss each of these algorithms in more
detail.

441 FFT METHOD

The amplitude spectrum for a digital signal is often expressed as:

00

Xe®) = Y, x(n) eTO0 “.19)

To0

In practice, however, the amount of data is always limited. One of the most widely
used PSD estirnators, based upon an FFT operation, is typically referred to as the
periodogram. For data samples xg.....XN-]. the periodogram estimate of the PSD is
defined as:

N-1 2

2 1 2 -ji2rfnAt

.S(f)-NAt At n€ (4.20)
n=0

where N is the number of data, At is the sampling interval, and f is in the range of -
1/(2At) < 1/(2At). Use of the periodogram permits us to evaluate the PSD at N
equally spaced frequencies fm= mAf Hz, for m=0,1,....N-1 and Af= 1/NAt. If the Af

factor is incorporated into §(ﬂ. then (4.20) can be written as:

A ‘ l 2
S B8 =5 X |

N-1 2
2" -j2rmn/N
n
n=0
= N 4.21)

where Xm are the coefficients discrete Fourier transform (DFT) of x(n).



Not only is the perlodogram a biased estimator of the power spectrum, but it
is also not a consistent estimator, i.e. when N goes to infinity, g(f) may not converge
to its mean value statistically [58]. This phenomenon is primarily caused by the
absence of an expectation operator in the above equation. Several methods can be
used to reduce the varlance of the perlodogram PSD estimators. One of these
methods is to divide a long data sequence into M short sequences, and separately
applying each sequence to the periodogram. The results are then averaged.

Estimation of the mean of the PSD with the perlodogram is straightforward,

M-1

zfmsm
A 1m=0
fepr o (4.22)

F
2°m
m=0

1
where fp = 2a¢ 1 the Nyquist frequency, and fy, is defined as ﬁiA—t -fp. T ranges from

-1.0 to 1.0. It can be shown that (4.22) generally is not a consistent estimator for the
mean frequency. Only when the spectral lines are mutually independent, is (4.22) a
consistent estimator (see Appendix 4.1).

In equation (4.22), we did not consider the effect of noise. However, the
estimate of mean frequency of the PSD is often biased by the noise. If we write the
power spectral density for S{fy) as a sum of the spectra of the signal and noise,

S{fm) = Sy + Ny

with Sy, and np, as the discrete spectral densities of the signal and noise

respectively at frequency fi;. Equation (4.22) can now be expressed as follows:



Mg my
=1+N/S*T+S/N

(4.23)

where mg is the first moment of the signal spectrum, my; is the first moment of the

noise spectrum, and N/S is the inverse of the SNR. Therefore the bias caused by the

noise is equal to

. _MmgN/S  my
Bias = I /5t 1+ 5/N

(4.24)

Notice that in equation (4.24) the bias is a linear function of mg. When the noise is
white, the second term of (4.24) is zero, andthe bias approaches zero as the mean
frequency, mg, approaches zero. This is illustrated by Figure 4.2. When the mean
frequency is zero, there is no bias caused by noise.

In addition to the bias caused by noise, the estimator is also biased by
aliasing of the spectrum of the signal. From Figure 4.2, it can be observed that, at 0
dB SNR, the estimate suffers a considerable amount of bias. The estimate is about
half of the true value of the mean frequency. At 10 dB SNR, the bias is negligibly
small in the middle part of the Nyquist interval, and the estimates almost agree
with the true values of the mean frequencies. However, when the mean frequency
approaches the ends of the Nyquist interval, the estimates starts to curve towards
the O frequency. This phenomenon is caused by the aliasing of the spectra of the
signals. In summary, the FFT estimator of (4.22) only works well when the
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Figure 4.2. Simulation of FFT estimator without de-aliasing and
noise suppression, under the condition ¢ = 0.1, SNR=0dB, and 10 dB,
and the number of runs = 200.

signal-to-noise ratio is high and the signal is free of frequency aliasing. In case of
poor SNR and frequency aliasing, the estimated mean frequencies yield very large
errors as shown In Figure 4.2, In the next two sections, we discuss noise suppression
and de-aliasing algorithms that can remove or reduce the bias due to the noise and
frequency aliasing.

4.4.1.1 Estimation of The Mean With Noise Suppression

If we assume that the signal and noise are uncorrelated, and the spectral
density of the noise can be estimated separately, one way to reduce the bias caused
by frequency aliasing is to subtract the noise spectral density, N(fm), from the
derived spectral density and calculate the mean of the resulting spectrum, i.e.,

M-1
3 b (S(E) - NCE)

2 1 m=0
f-f M-1 (4.25)

F
Z(S(fm) - N(fm))
m=0
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Figure 4.3. Monte Carlo simulation of FFT estimator with noise
suppression; a) estimate under the condition o= 0.1, SNR = 0 dB, and
10 dB, with 200 runs: b) RMS errors as functions of frequency and the
spectral width of power spectrum of signal.



Although this estimator may result in some spectral lines with negative values, the
biases are effectively removed from the estimates. This method was examined by
Sirmans and Bumgarner [64] with computer simulations. Their results can be
summarized as follows: the FFT with noise suppression is an estimator of mean
frequency unblased by noise even for a low SNR and the standard deviation of the
estimate with the noise suppressed is comparable to the standard deviation of the
signal plus noise mean estimates.

Some of the results of the computer simulations for the noise suppression
scheme are presented in Figure 4.3., which shows that the bias caused by noise is
removed by the noise suppression. However, the estimates of the mean frequency of
the signal are still biased at the frequencies near the ends of the Nyquist interval

because of frequency aliasing.

44.1.2 FFT Method with De-allasing

As shown in previous sections, the performance of the FFT method is
severely degraded by aliasing of the spectrum. This is particularly noticeable when
the spectral width of the signal is large. The effective unambiguous frequency
measured by the FFT estimator can be significantly reduced without application of
a de-aliasing method. One method to reduce the effect of aliasing is to shift the peak
of the spectrum to the center of the Nyquist interval (at zero frequency) before
applying the FFT estimator, and add the shifted frequency back in the final
estimate. Such an algorithm was discussed by Zrnic [65]. In the computer
simulations performned in this chapter, we used a similar method as explained
below:

¢ a) Smooth the periodogram by weighted running average. The size of the
window used in the smoothing was selected proportional to the spectral
width of the PSD. The maximum size of the window was limited to half of
the Nyquist interval.

* b) Search for the peak of the smoothed spectrum of the data, then locate its
position, say fp.



¢ ¢) Shift the entire spectrum such that the peak fp is now at zero frequency.

» d) Apply the following formula to estimate the mean frequency ,

M-1
fmS’m
A 1m0
f=f+ e (4.26)
25m
m=(

where Sm= Sm-p.

In implementing such an algorithm, tradeoffs are encountered in choosing
the size of the smoothing window. If the window size is too small compared with the
spectral width of the data, the algorithm may select a frequency peak which is not
close enough to the true mean frequency, and the bias caused by frequency aliasing
cannot be effectively removed. On the other hand, if the width is too large, it will
increase the uncertainty of the location of the peak frequency. In the computer
simulations performed, we chose the widths of the smoothing windows to be
proportional to the spectral width of the signals.

Some results of Monte-Carlo computer simulations of such an algorithm are
presented in Figures 4.4. In these computer simulations, the Nyquist intervals are
normalized to [-1, 1]. The standard deviation of the spectrum are chosen to be 0.1.
The RMS error of the estimate is defined as:

RMS ERROR =

(4.27)

A -
where f_ is mth estimate of the mean frequency f, and M is number of runs.



1.0 -o.

-------- Mean Frequency .".
® Estimate .".
0.5 - 2
o 2
z -*
O”
e 0.0 1 e
« -*
£ 4
% o*
W 0s5- e
K J
.‘..
I
0..
1.0 T T
-1.0 -0.5 0.0 0.5 1.0
Mean Frequency (Hz)
a)
0.10 -
0.08 —o— 10 dB SNR
N
I
= 0.064
S
Y 0.04-
[1)
=
[eof
0.02
0.00 . — LU ]
-1.0 -0.5 0.0 0.5 1.0
Mean Frequency (Hz)
b)

Figure 4.4. FFT Estimator with de-aliasing applied with ¢=0.1,
SNR=10 dB, a) the plot of ensemble average of estimates; b) plot of
RMS error with 200 runs. For the RAWS parameters, the scale would
be from -1.75 kHz to + 1.75 kHz. The frequency shown here is
normalized to the Nyquist frequency.

-9] -



These results show that the de-aliasing algorithm improves the performance
of the FFT estimator significantly. Even at a SNR of O dB, the estimate is still able
to converge to the true mean frequency, indicating the de-aliased FFT estimator is
an unbiased estimator of mean frequency.

The fact that the de-aliasing method reduces the bias caused by noise is in
agreement with equation (4.25). This equation indicates that, as the mean
frequency goes to zero, the bias caused by noise also goes to zero. After applying step
c) in the de-aliasing algorithm, the bias caused by noise acts like a zero-mean
random variable. Hence, the estimates can converge to the true values of the mean
frequencies. However, this is only true when the noise is white For colored noise,
noise suppression may need to be applied before applying the de-aliasing algorithm.

442 THE COVARIANCE ESTIMATOR

The covariance method for computing the moments of the Doppler spectrum
has come into widespread use in recent years. These methods have been discussed in
many papers: Rummler[66], [67], Benham and Groginsky [68], Miller and
Rochwarger[69], Sirmans and Bumgammer{64], [70], and others. The covariance
method is a time-domain estimator. Therefore, it does not need to estimate the
power-spectral density. One obvious advantage of this method is that it requires
fewer computations. In addition, this method does not require equal time interval
between sampled pairs, This property makes it possible to combine this method
with waveform modulation for removal of range and frequency ambiguities (see
Chapter 5).

The following covariance method for estimating the mean of the spectral
density is described by Sirmans and Bumgamer [64]. This method, also called
pulse-pair processing, is based on the fact that the moments of a random variable x

my,= Ex") (4.28)

are related to the derivatives of its characteristic function ®{w). the Fourler
transform of its probability density function with a reversal in sign, by
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n d" &0)

j = (4.29)
"n dx"

Since the autocorrelation function and the power spectral density S(f) constitute a
Fourler transform pair, the moments of the power spectral density are related to the

derivatives of the autocorrelation function by an equation similar to (4.29):

R'©O)
=
“'n =] R(0) (4.30)

Expressing the covariance function in a polar form
R(1) = A(1) explj2rg(t)]

where Al1) is a real even function of T and g(1) is a real odd function of 1. The mean of
the PSD is equal to

A 1[R'(™) _d
f=j7t|:R(‘t):| —[d‘t g(t)] (4.31)
1=0 =0

Notice that A'(t) is an odd fur:ction so that A'(0) =0. This is also true for g(0).
Therefore f can be approximately written as

A g)-g@ gl 1

f= T = = Arg[R(7)] (4.32)
In the computer simulations, a maximume-likelthood unbiased estimator of R(t) was
used [69]:

N-1
A
R ®=1/N me X*n (4.33)
n=0



A
ImR, (1))
arctanf ——— (4.34)
ReR, (1)

nT

where Xn+1 and X, are complex samples of data, spaced t seconds apart, and f

ranges from -1.0 to 1.0.

One important fact to note is that a large interspacing between two pulse
pairs does not reduce the accuracy of the covariance method. On the contrary,
according to [71], when the interspacing increases, the accuracy of the covariance
method should also increase because more independent samples of R(t) can be
achieved. The results of the Monte-Carlo simulation presented in Figure 4.5 agree
with this fact: the estimator with longer spacing between pulse pairs give smaller
RMS errors. The data used were computer simulated weather radar signals with
Gausian spectra. To select different spacing of pulse pairs, the following formula

was used to calculate R(1):

<

R =Y x(i*k + 1) x*(i*k)

=

[ua

where k is interspacing of pulse pairs. Figure 4.5a shows that the covariance
estimator is a consistent estimator of the mean frequency.
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4.4.3 THE PARAMETRIC METHODS

Many deterministic and stochastic discrete-time processes encountered in
practice are well approximated by certain rational transfer function models. Such
models, known as the ARMA models, represent random processes, whose PSD are to
be estimated in terms of linear difference equations of the following form:

P q
x) = Tap i xn-i) + Y by i en-k) 4.35)
i=1 k=0

where bq,0 is 1 and e(n) is a zero-mean white Gaussian noise sequence. x(n) may be
viewed as the response of a linear time-invariant filter whose input is a white noise

sequence. The transfer function of such a filter has the form

J i2nfk
2. b ke
8(f) k=0
o(f)- p

-3 an oi2nfi
k=1

H(f) = (4.36)

Equation (4.36) consists of two parts: the autoregressive part and the moving-
average part. The autoregressive (AR) portion consists of the poles of the filter and
is the denominator of H(f); the moving average (MA) portion consists of the zeros of
the filter and is the numerator of H(f). The PSD of the random process x(n) is given
by

Sxx() = HCH HO S0 = 1H(D 1207 4.37)

2 , . . . .
where O, is the variance of the input noise, or the power spectral density of the noise.
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To examine the performance of the parametric method in evaluating the first
moment of the power spectrum of radar echoes, we will concentrate our attention on
the Autoregressive models. Because the power spectrum of the radar echo is expected
to be Gaussian in shape, it can be approximated by an all-pole form of a transfer

function, or an Autoregressive model as follows:

x(n) = g ap i x(n-i) + e (4.38)
i=1
where
en = white noise
P = number of poles of the autoregressive model
ap,i = coefficients

There are two ways to solve for the coefficients ap, j: one is to use the Yule-Walker
equation; the other is to use the Levinson-Durbin Algorithm. Both of these methods
are discussed in numerous papers and text books concerning time-series analysis
[57].[172].[73] and [74]. In the following, we will only discuss the Levinson-Durbin
algorithm., The Levinson-Durbin algorithm requires only order O(p2) operations,
as opposed to O(p3) for Gaussian elimination in solving the Yule-Walker equation.
The algorithm proceeds recursively to compute the parameter sets :

2 2 2
(a11, 04}, {21, a2, ), -, {ap1, ap2, - app. cp}

where ajj are estimates of the coefficients, and 0}2, is the estimate of the variance of
en. Note that an additional subscript has been added to the AR coefficients to denote
the order. The final set at order p is the desired solution. In particular, the recursive
algorithm is initialized by



op=0- | a1 | R

with the recursion fork=2, 3, ..., p given by

k-1
-|Rxx(® + ¥ ak-1,nRxx(k-n)
apg= n=1 5
g

k-1 (4.39)

»
aki=ak-1,1 + @akk=ak-1,k-1 (4.40)
°ﬁ=(1 -lagy?) ol 1 (4.41)

Once the coefficients have been calculated, the power spectral density can be
determined from the following

2
- G“At
Sar = D 2

1+ ¥ ajpe-2ntkat
k=1 (4.42)

The estimate of the first moment can be determined from equation (4.22). Some of
the computer simulation results are presented in Figure 4.6. Figure 4.6a shows the
ensemble average of the estimates for AR(2) and AR(20); Figure 4.6b shows the RMS
errors for AR(2) and AR(20). It shows that the increase of the order of the AR model
does not improve the accuracy of the estimates.

4.4.4 RANDOM SAMPLES AND SPECTRUM ESTIMATION

It is well known that with the conventional equally-spaced samples,
aliasing will occur if the power spectrum falls out of the Nyquist interval. However,
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with unequally spaced samples, we may achieve estimates of the power spectrum of
a stationary random process that are not aliased. Perhaps the best known result is
that Poisson sampling of a stationary process is allas-free [75]. In the following

section, we choose a sampling scheme

t, =nT+y(AT -05T (4.43)
where AT | is a random variable having a uniform distribution on interval [0.1] and

y is in the range [0,1]. To evaluate the power-spectral density, we used an intuitive
formula, which is similar to the definition of PSD for a continuous random signal,

glven below

N-1
S(f) = Zx(ti) e JoY; A (4.44)
n=0

where A1 = t1 1 ti' To evaluate the first moment, we used the definition:

, 1/2B
Im 1o ae (4.45)
ms= =y .
BB /2

When y = 0, this sampling scheme is identical to the equally spaced sampling
scheme and the power-spectrum estimate is equivalent to the DFT method. When y
= 1.0, this sampling scheme achieves maximum randomness. Computer
simulations were performed using this scheme. The results show that for a signal
with a small spectrum width (oN <0.1), the random sampling scheme does give an
allas-free estimate of the power spectrum with reduced SNR. However, when the
spectrum width is large, the shape of the estimated PSD is not discernable. Some
work done on random sampling can also be found in [76].
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4.5 RESULTS OF COMPUTER SIMULATIONS, CONCLUSIONS, AND
FUTURE WORK

4.5.1 MONTE CARLO SIMULATION OF THE ESTIMATORS

To compare the statistical properties of the algorithms discussed in this
chapter, several Monte-Carlo simulations were completed, each with 200 runs and
128 samples, to calculate the RMS errors for each of the algorithms under different
frequencies, spectral widths, and SNRs. The frequencies are normalized to two
Nyquist intervals; one is the unit Nyquist interval from -1.0 Hz to 1.0 Hz, the other
is from -1750.0 Hz to 1750.0 Hz used by the RAWS. The RMS errors are calculated
according to equation (4.27).

The results are presented in Figures 4.7 to 4.12. In Figures 4.7 to 4.9, the RMS
errors are plotted as functions of both SNRs and frequencies. In Figures 4.10 to 4.12,
the RMS errors are presented as functions of SNRs and spectral widths of the
signals. The results indicate that all three estimators are unbiased; the ensemble
averages of the estimates converge to the true mean frequencies of the signals. The
RMS errors of estimates in these algorithms are independent of frequency.
However, the RMS errors are linear functions of the spectral widths of the spectra of
the signals in the range of 0.0 Hz to 0.4 Hz for the unit Nyquist interval, or in the
range of 0.0 Hz to 700 Hz for RAWS's Nyquist interval.

In comparing of Figures 4.7 to 4.9, it can be seen that when the SNR is high,
for example 10 dB, all three estimators give similar performance in term of mean-
square errors in estimation. However, when the SNR decreases to 0 dB, the
covariance method produces the smallest estimate errors of the three; at 0 dB SNR,
the AR(2) estimator is slightly better than the FFT estimator. Previous work
performed with these estimators appeared to indicate that the AR(p) modeling
should require more computation than the FFT estimator. However, when the order
of the autoregressive model p is low, such as 2 in our simulation, the estimator
based on an autoregressive model may need less computation power than the FFT

estimator.
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4.5.3 CONCLUSIONS AND FURTHER WORK

The de-aliased FFT, the covariance estimator, and the AR estimator are
comparable in performance. The errors in the estimates depend on the spectral
width and SNRs of the input signals. The errors are mainly functions of the spectral
widths of the signals when the SNR is above 5 dB. As discussed in the introduction,
the spectral widths of the signals in RAWS are expected to be half of the Nyquist
interval. In such cases, all the estimators discussed in this chapter produce large
estimation errors, about 10% of the Nyquist frequency. This means, for a 3500 Hz
PRF, the RMS errors are around 175 Hz. Part of the estimate error is caused by
aliasing of frequency spectrum. To reduce the estimation error caused by aliasing of
the spectrum, we need either to increase the PRF or to reduce the {nter-spacing
between the two pulses in the covariance method. In Chapter 5, we discuss how to
use the latter combined with waveform modulations to mitigate the ambiguity
problems as well as to reduce the estimation errors caused by aliasing of spectrum.
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In this chapter, we discussed the performance of several estimators of mean
frequency: the FFT estimator, the covariance estimator, and the estimators based
on autoregressive models. The covariance estimator seemed to produce slightly
smaller errors than the FFT estimator and the autoregressive-model-based
estimators in the computer simulations. However, this is true only under the
condition that the power spectrum is symmetric and has only one peak. In practice,
interference caused by leakage from the transmitter, or clutter, may cause the
returned signals to be non-symmetric or have more than one peak. In these cases,
the covariance method may not work as well as the other estimators. We only
discussed two autoregressive-model-based estimators, AR(2) and AR(20). The results
showed that there was no difference between these two estimators in terms of the
estimation errors. We also discussed the random sampling method to estimate
spectra of signals. Because of limits on time and volume, we did not investigate the
random sampling method in great depth.
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APPENDIX 4A PROOF THAT THE FFT ESTIMATOR FOR MEAN IS
CONSISTENT

To prove that (4.22) is a consistent estimator of mean frequency, we must
show that as M approaches infinity, the variance of (4.22) approaches zero. Let S(fj)

be denoted as Sj Af, and without loss of generality, assume that

M-1
2Sfp=1,
i=0
then
M-1 M-1 2 M-1 2
var( T S®) = | T sl) Afz-[ 34 E(Si)):l af?
1=0 1=0 i=0
M-1  M-1 .
=3 2 fify (E(S1S) - S
o SN S - S§)
M-1 M-1 o
=3 2 fifi po o 0,0, Al (4.46)
i=0 j-_-oij S8y 1)

Theoretically, the above result is bound by the following inequalities:

M-1 M-1 M-1 M-1

z qzci o B Biess oopfs T3 i opals mmy?
i=0 j=0
(4.47)
where
m] = the first moment of the power spectrum
M = total number of samples ,
pyj = cross correlation coefficients between spectral line 1 and spectral
line j
o = standard deviation of spectral line i
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When the spectral lines are mutually independent, the cross-correlation

coefficients are

1 wheni=j

0 wheni#j

Under this condition, when M goes to infinity, the variance of the FFT estimator
approaches zero because Af = 1/M. Therefore, the estimator is a consistent
estimator. On the other hand, if the spectral lines are not mutually independent,
the variance is bounded by the square of mj. Therefore, when spectral lines are not
mutually independent, only when m; is equal to zero is the FFT estimator a

consistent estimator.
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Chapter 5

Algorithms for Removal of Range and
Frequency Ambiguities

5.1 INTRODUCTION

The characteristics of radar echoes from weather targets impose limitations
and tradeoffs on applications of Doppler radar systems for weather observation.
Such limitations come from two facts: a) weather targets are distributed quasi-
continuously over large spatial regions (tens to hundreds of kilometers), and the
strength of radar echoes from a significant weather target easily spans an 80 dB
power range [59}; b) the mean Doppler frequencies of radar echoes from weather
targets are often higher than the maximum unambiguous frequency of the radar
system. In other words, the inherent ambiguity problem in radar systems becomes

more prominent in weather radars.

For pulsed-Doppler radars, the unambiguous range, rg, is generally defined
as the maximum distance that a transmitted pulse can travel to a target and echo
back to the radar receiver before the next pulse Is transmitted. The maximum
unambiguous frequency is generally considered as half of the PRF. When a target
area is located beyond the unambiguous range, the echoes returning from that area
arrive after the next pulse is transmitted. This creates what is commonly referred
to as range ambiguity. Radars having uniform PRF and without some form of
coding fram pulse to pulse cannot discriminate between echoes coming from targets
located within the unambiguous range,and those outside this range.

The maximum unambiguous velocity, va. measured by a Doppler radar is

related to the maximum unambiguous frequency by
Va = A prf /4
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where A is the radar wavelength. A velocity higher than the maximum
unambiguous velocity causes frequency ambiguity. Range ambiguity and velocity
ambiguity are not independent; it can be shown that vara=Ac/8. This relation
indicates that either the unambiguous range or unambiguous velocity can be

increased only at the expense of the other.

For example, in the conceptual model of RAWS described in Chapter 3, the
PRF is set to 3500 Hz to avoid range ambiguity. However, if the radar needs to
measure 60 m s-! wind speed, the maximum Doppler frequency of radar echoes
caused by wind will be 14200 Hz at 35 GHz. This frequency is 8 times as large as the
Nyquist frequency of 1775 Hz, and will certainly create frequency-ambiguity
problems. In such a case, the true mean frequency of the signal cannot be measured
correctly with the conventional methods because of frequency aliasing. On the
other hand, if we choose the PRF high enough to satisfy the Nyquist criterion, say
PRF = 29000 Hz, there will be no frequency ambiguity. However, with a maximum
range of 20 km the radar echoes from different transmitted pulses will overlap.
Therefore, to satisfy the required maximum frequency and range of RAWS we have
to solve the radar ambiguity problems.

The algorithms developed thus far for reducing radar ambiguities can be
classified into one of the following categories:

* Interpulse phase coding: in an interpulse phase coding method, the
transmitted pulses are modulated with a sequence of discrete phase codes. At the
receiver, a coherent reference signal is used to correlate with the received signals
from a specific trip. The objective of the phase coding is to make signals returned
from different trips have poor cross correlations. Therefore, the interference
between echoes from different trips can be reduced. In general, after coherent

processing, the interference from overlaid echoes appears like white noise.

e Multiple pulse-repetition-frequency methods or multiple pulse-repetition-
time methods. These methods are also known as staggered PRF or staggered PRT
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methods. In these methods, pulses are transmitted with two or more different PRF's
or PRT's. The estimates from each PRF or PRT can be combined or correlated to find
the true mean frequencies of the signals. With staggered PRF or staggered PRT
methods, the maximum unambiguous frequency of a radar system can be extended.

¢ Polarization coding from pulse to pulse and frequency hopping from pulse
to pulse: Doviak and Sirmans [81] suggested an orthogonal polarization coding for
successive pulses. In this method, two orthogonal polarizations are used for two
successive pulses. Therefore, the overlaying between the radar echoes from the first
trip and the second trip is reduced by the polarization of the antenna. However, the
depolarization by hydrometeors and the radar system limits this method to about
20 dB of suppression of the interference. The frequency-hopping method was
suggested by Doviak and Zrnic [44]. In that method, consecutive pulse pairs are
transmitted at different frequency steps; therefore, the echoes from different pulse
pairs can be separated by filters.

e Since the wind profiles are normally continuous in both frequency and
space, the frequency ambiguities could be corrected by removing the discontinuities
in the wind profiles. Such a method was demonstrated by Jiro [82].

The first three algorithms mentioned above are related to inter-pulse coding
in either phase, polarization or pulse position. In this chapter, we will further
discuss these methods, and compare their performance with computer simulations.
Since the radar ambiguity function is a widely used tool for analyzing and studying
the ambiguities of waveforms of radar signals [83], we will also discuss the
algorithms for removal of radar ambiguities in term of their radar ambiguity
functions. To cdmpare the performances of different algorithms, Monte Carlo
simulations were performed to calculate the second-order statistics of these
algorithms. In addition, a new algorithm for reducing range and Doppler
ambiguities using waveform modulation is discussed.
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5.2 INTERPULSE PHASE CODING

In the following sections, we will examine the performance of different
ambiguity-removal methods through the interpretations of their radar ambiguity
functions. As we know, a radar ambiguity function can be used to show the
properties of range resolution, frequency resolution, and the distribution of
ambiguities for a particular waveform. We will correlate the radar ambiguity
functions of the algorithms discussed in this chapter with their performance in
estimating the mean frequencies. Before discussing the algorithms, we briefly
review the properties of ambiguity functions. A detatled discussion on ambiguity

functions of radar waveforms can be found in [82].

5.2.1 RADAR AMBIGUITY FUNCTIONS

The response function for a radar signal has two basic forms:

+00

X, (T 9 = J.u(t) u’(t+7) e 1270t gy (5.1

-00

+00

X @ 0= [ UEoU"® 27T gt 5.2)

00

where u(t) is the transmitted signal and U(f) is the Fourier transform of u(t). The
response functions given in (5.1) and (5.2) were derived by using the definition of a
matched filter and thus are sometimes called the matched-filter response functions.
The ambiquity function is defined as 1y12.

The function yx{1,¢) for a fixed ¢ and a fixed t describes the amplitude
modulation of the signal at the output of a receiver filter from a target with a

Doppler shift ¢ relative to the center frequency of the filter and a delay 1 from the
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time to which the filter is matched. The response function can also be interpreted as
the correlation between the transmitted complex waveform u(t) shifted by the
Doppler frequency ¢, u(t)eJ™!, and u(t) itself, where the shift $=0 occurs at time To.
When ¢=0, the response function reduces to the autocorrelation function of the
transmitted signal u(t). To avoid misinterpretation, hereafter in this chapter we
refer to 1| as the ambiguity function.

Several of the important properties of a radar signal can be determined from
its ambiguity function. An ambiguity function has its peak value centered at the
origin, indicating that the largest signal output occurs when a target has the range
and velocity to which the filter is matched. In practice, being matched to a
particular range and Doppler means that the filter is (1) sampled at the time
corresponding to the round-trip delay of the transmitted signal to a target and (2)
tuned in frequency to the Doppler shift corresponding to the radial velocity of the
target.

Targets which appear at ranges and velocities such that |x(t,¢)| is about as
large as |%(0,0)| are indistinguishable to the radar. The width of the peak about (0.0)
defines the resolution of the waveform. Other peaks away from (0,0} correspond to
the ambiguities of the waveform. The minimum distance in the delay-time domain
between the peaks other than the origin and the peak in the origin corresponds to
the maximum unambiguous range; similarly, the minimum distance in the
Doppler-frequency domain between the peaks other than the origin and the one in
the origin corresponds to the maximum unambiguous frequency.

Ambiguity .functions can also be used to study clutter rejection. Clutter can
be described as any unwanted backscatter. Waveforms having x(t,¢) =0 in the region
of the 1¢ plane where clutter exists generally have good clutter-rejection properties.
More precisely, the summmation over the entire t¢ plane of the product of |x(t,¢) |2
with the clutter distribution over the 1¢ plane determines the total interfering
clutter signal. The energy of the clutter can be calculated from the following

equation:
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too 2
c=[[p(x. 9) o(1,9) X, )| dr do
2 (5.3)

where o(t,¢) is the backscatter cross section of the clutter, and p(z,¢) is the density
function of clutter. Notice the spreading loss factor (4m)3 R? is omitted in the above

equation.

A cross-ambiguity function describes the situationwhen the recetver filter is
matched to a modulation v{t) which is different from the transmitted modulation
u(t). The cross-ambiguity function is defined in the following forms:

+00

o= Jum vt s nei2noT g (5.4)

o0

xuv

+o00

o xme= U+ VO T2 gt (5.5)

o0

A cross-ambiguity function can also indicate information about the range and

frequency ambiguities as does an ambiguity function.

As examples of ambiguity functions, the following figures present two

ambiguity functions: one is for a rectangular pulse:

1 )

1 t — Itl<=

® =—rect\s) = 2
u 75 (5) {05

elsewhere

where 8 is the pulse width. The ambiguity function of u(t) is
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) jror 8- lth)sinnod-1tl)
reCt(ZB)e 5 s - 11l

x(1,6)= (5.6)
0 when Itl1>8
The other example is a rectangular, linear FM pulse:
‘l t . t2
u(t) = —=rect{ 5 ) "¢
Lalt)
The ambiguity function of above u(t) is
. - Iz si -l
() 12D s e
1(1,0)= mat+9)o - It G

0 when ltl28

As we have mentioned, the ambiguity function represents the output of a matched
filter. The Doppler frequency information is contained in the factor ™% These

ambiguity functions are plotted in Figure 5.1. As indicated by equation (5.7), the
peak of a signal with a Doppler shift ¢g would also shift in time by amount tg=¢9/.

However, as o is usually very large, on the order of 10+12, 19 would be very small in

comparison to § and can be ignored in most cases.

5.2.2 RANDOM-PHASE CODING

Random-phase coding is a method used for removing range ambiguities. A
random-phase method was first applied in the RONSARD radar [84] using the
random phase inherent in the magnetron transmitter. The phase coding was used
to remove the bias in the estimate of the mean frequency due to overlying echoes by
measuring the transmitted phases and using them to compensate for the phases of
the received signals. At the receiver, only the echoes from the first trip were made

coherent, and all the overlaid echoes from other trips were incoherent and appeared

-116-



as increased white noise. Therefore, the bias in the estimate of mean frequency

caused by interference could be reduced.

Laird suggested a phase-coding scheme in which the phase of the transmitted
pulse is coded with binary random number 0 or = [85]. By employing a coherent
reference, this scheme could re-cohere radar echoes from any particular trip and
make the echoes from other trips appear like white noise. However, because the
phase coding method only spreads the energy of interference echoes in the
frequency domain, and does not reduce the total energy of the interference echoes,
only one trip can provide a sufficiently large SNR for reliable measurement. As a
result, the random phase coding method has limited use.

Therefore, the random phase-coding scheme cannot effectively recover the
echoes from a trip if the energy of interfering echoes from other trips is strong. For
this reason, Siggia developed an adaptive filter for processing the random phase
coded radar signal [86]. The adaptive filter can reduce the effect of interfering
echoes and increase the effective SNR. However, a significant tmprovement can be
achieved only when the spectrum of the radar echo has a narrow width [87], and this

method is computationally intense.

Computer simulations of ambiguity functions for three different phase-
coded pulse trains were presented in Figures 5.2, 5.3 and 5.4. Figure 5.2 shows the
ambiguity function of a uniformly spaced pulse train with no phase coding. As
expected, the uncoded pulse train generates periodic range and frequency
ambiguities. Figure 5.3 shows the ambiguity function of a uniformly spaced pulse
train with random phase coding as used in [85]. We can see that the range
ambiguities are réduced. the energy of interferences is distributed across the whole
Nyquist interval and acts like white noise. However, the frequency ambiguities are
unchanged. A similar statement can be applied to Figure 5.4, which shows the
ambiguity function of a uniformly spaced pulse train modulated with a 13-bit long
Barker-code.
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P

b)

Figure 5.1. Examples of ambiguity function: a) ambiguity function
for single rectangle pulse, b) ambiguity function for single linear FM
modulated pulse. Absolute value shown for response function.
Ambiguity function is square of response function, but contrasts are
too great to show effectively on a 3-D graph. All other graphs in
Chap. 5 labelled “ambiguity function” are actually response-function
magnitudes.
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I2(1.0)]

Figure 5.2 Ambiguity function of uniformly spaced pulses in which
the pulse shape is Gaussian and total pulse number is 30.

|y

Figure 5.3. Ambiguity function of uniformly spaced pulses with
random phase coding, the total pulse number is 30.
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PTO]

Figure 5.4. Ambiguity function of uniformly spaced pulses with
Barker phase coding, the total pulse number is 13.

In summary, random phase-coding methods can be used to correlate signals '
returned from a specific trip and make the echoes from other trips appear like white
noise. Thus, the frequency measured will not be greatly biased by the interference
from other trips. Taking another point of view, the phase coding methods can be
viewed as multiplying the transmitted pulses by a random signal sequence in the
time domain; therefore, without a matched receiver, the spectrum of the received
signal would lock like white noise too.

However, the random phase coding does not reduce the total energy of the
interference. Instead, it spreads out the spectrum of the interference over the entire
Nyquist interval. Therefore, the interferences would act like white noise and
deteriorate the SNR if proper filtering were not applied. Since only the signal
returned from one particular trip would have large enough SNR ( > 3 dB) for reliable
estimate of the mean Doppler frequency, in practice the random phase-coding
scheme may not be able to retrieve the mean frequency from echoes of an arbitrary
trip.
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5.2.3 DETERMINISTIC PHASE CODING

Zmic and Mahapatra further studied the adaptive filter method discussed by
Siggia for processing random phase-coded signals, and concluded that effective
improvements in suppression of overlaid echoes are possible only when overlaid
echoes have narrow spectral widths [87]. Sachidananda and Zrnic proposed an
alternative phase coding method which can reduce the correlation of an overlying
echo signal to zero at one-pulse lag [88]. With this phase coding, the covariance
("pulse-pair”) estimator can give an unbiased estimate of mean frequency in
presence of overlaid echoes from adjacent trips. The sequence of codes they
suggested is n/4, -x/4, n/4.... At the receiver a sequence of -n/4, O, -n/4.... is used to
correlate the first trip echoes, and a sequence of 0, -x/4,0, ..., is used to correlate the
second trip echoes. This phase-coding scheme can make the autocorrelation
functions of either the first trip echoes or the second trip echoes equal to zero.
Therefore, the measurements of the mean frequency for either the first pulse or the
second pulse are not affected by echo overlaying, provided that the overlaying of
echoes is only due to two adjacent pulses.

The ambiguity function of a pulse train with such a coding scheme is shown
on Figure 5.5. Figure 5.2 shows the ambiguity function of a corresponding pulse
train without phase coding. One interesting point to note here is that one can arrive
at a conclusion similar to that drawn from [88]. That is, all of the peaks of the range
ambiguities from even trips are reduced to zero along the t (¢=0) axis. This is
expected since the ambiguity function is reduced to the autocorrelation function
along the t axis. However, we also found that this scheme shifted the peaks of the
ambiguities along the 1 =t T, £ 3T... axes towards the T axis for all of the even trips.
This means that the unambiguous frequency for the second tﬂp echoes are reduced

to a smaller range.

From the above discussion, we can conclude that all the phase coding
methods can be used to reduce the range ambiguity which results in flattening the
peaks of the ambiguity function on the 1¢ plane. However, the distances between
these peaks along the frequency axis is not changed by the phase coding methods.
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As a result, the maximum unambiguous frequency remained unchanged. Therefore,
phase coding is suitable for high PRF situations where the frequency ambiguity is

not a problem.

|2t |

Figure 5.5. Ambiguity function for uniformly spaced pulses with
-n/4, x/4. ..., -n/4, /4 inter-pulse coding.the pulse shape is Gaussian,
and total number of pulses is 30.

One other problem with the phase-coding methods is that the leakage from
the transmitter may interfere with the receiver's operation if the isolation between
the transmitter and receiver is not nearly perfect. This may be a serious problem
for a chirp radar as an expanded pulse often lasts several tens of micro-seconds, and
during the transnﬂtting period the receiver cannot receive useful signals.

5.3 MULTIPLE PRF AND FREQUENCY AMBIGUITY REMOVAL

There have been many staggered PRF or PRT methods proposed for solving
range and frequency ambiguities. Hennington (1981) suggested a method of
transmitting a train of short pulses following by a long pulse to reduce the
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frequency ambiguity of the targets [89]. The long pulse was used to estimate the
reflectivity of the targets; the short pulses were used to estimate the moments of the
frequency spectrum. However, this scheme may not be applicable to a spread target.
Strmans et al suggested a staggered-prf method using two or more prfs to extend
unambiguous frequencies [90]. Similar methods also were proposed by
Sachidananda and Zrnic [88] and Ludloff and Minker [91]. In the remainder of this
section, we will examine only two of these methods: the method discussed by Ludloff
and Minker will be called "STAGGERED PRF METHOD-A," and the method
discussed by Sachidananda and Zrnic will be called "STAGGERED PRF
METHOD-B."

5.3.1 STAGGERED PRF METHOD — A

This algorithm was intended to be used in solving the blind speed problem of
a MTD ( moving target detector) radar [91], but it may also be applied to Doppler
weather radar applications. The algorithm resolves the frequency ambiguity by
flluminating a target with a set of pulse bursts with different PRF's Fi, where
k=1,2,....K. Let fo,k be the measured Doppler frequencies associated with prf Fy.
These measured frequencies may be different from the true frequencies because of
frequency aliasing. However, for each prf Fi the true frequency can be found among
the following fi,k frequencies:

~

fi,k = ?O,R + Ik Fk i=..., -1,0,1,... (5.8)

To search for the true frequency, the algorithm systematically searches for those
integers Iy that cause all estimates ?1.k with different k to fall within a small

frequency interval or correlation bin. The average of the estimates provides an
improved estimate ?T with reduced standard deviation
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A=

K

and extended unambiguous frequency because fT may be much larger than any Fk.

From now on, let us consider the case that K = 2 with the stagger ratio

F{:Fp =m:n
where m and n are relatively prime numbers and m < n by definition. The expanded
unambiguous frequency interval is

f, = nF; =mF, (5.10)

PROBABILITY OF FALSE CORRELATION

Although this algorithm reduces the standard deviations of the estimates of
the mean frequency, it does introduce false correlation occasionally. The false
correlations occur mainly at those locations where fj k frequencies approach one
another with the minimum possible distance dmin in frequency. There is a simple
relationship between dmin and Fk given by [91]:

(5.11)

Let us assume the estimates are normally distributed. Then, if we define the
difference between the two estimates as x, the probability density function for x has
the following form :
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(x x)

’21{(01 . 02) v( 2(01 + 02)

where xis equal to O for a true frequency measurement and equal to dy, for false

p(x) = (5.12)

measurements. Since

2_ m 2
2=(2fs;

if we let Fg = 1, the false measurement probability can be approximated as:

A 05/n
P((f - fp)>05dmin) =1- [ p(x) dx
0.5/n
0.5/n
1 X 2
=1- exp| - —5 5 |dx (5.13)
01\j2n(1 +(m/n)?) 20,((m/n)*+ 1)
-0.5/n

Here, o] is approximately a linear function of the spectral width of the signal. As a
result, when the standard deviation of the power spectral density increases, the
probability of false measurement also increases as shown in Figure 5.6. It also can
be observed that the difference between the false measurement and the true
frequency is usually one or more Nyquist intervals. Thus, it is possible to correct
these false estimates by continuity or the method we are going to discuss in the next
section. The fj x can be estimated with the FFT method, the AR method, or the

covariance method.
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Figure 5.6. Simulation of STAGGERED PRF-A method, a) 6 = 0.1, SNR
=0dB, b) 6=0.3, SNR = 0 dB. Normalized frequencies are shown.,
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5.3.2 STAGGERED PRF METHOD - B

This staggered PRT method was described by Zrnic and Mahapatra [87]. In
this scheme, the pulses are transmitted alternatively with two different pulse

repetition intervals, T) and T2. The frequency estimate is determined by a formula
derived from the covarlance method:

(= 1 R(T?7)
T=R(T,-T) & (R(Tl))

1 R(T?)
“rT,(1-K) %8 (R(T])) (5.14)

where R(t) is the autocorrelation function of the radar echoes, and K is a constant
equal to T1/T2. The maximum unambiguous velocity depends on the difference of
T} and T9, and is equal to:

1

£ - (5.15)
max 1:(T2 - Tl)
The variance of this estimator can be derived from (5.14),
- 1
VAR = “(_TZ'_TIS VAR(G1 - 92) (5.16)

where 61 and 0 are equal to arg(R(T1)) and arg (R(T2)). A more detailed analysis can
be found in [87]. From this equation, we can observe that the standard deviation of
the estimate increases as the difference between T) and T9 decreases. The results of
a computer simulation are presented in Figure 5.7. These results indicate that the A
method is superior to the B method in terms of RMS errors; however the B method
does not give false estimates (individually big errors).
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Figure 5.7. Simulation of STAGGERED PRF-B method with T1/T9 =
0.875, 6=0.3, SNR = 0 dB. Normalized frequency is shown.

5.3.3 RANDOM PULSE POSITION CODING

The multiple PRT methods discussed above can be classified as special cases
of random pulse position coding. The general pulse train with pulse-position coding
and phase coding can be expressed as:

N-1 i¢_(t-nT-A_)
y( = ¥ ult-nTy-a,) &on n

n=0

(5.17)

where Ap is the displacement from nTg and ¢, represents the phase coding. The
form of the ambiguity function for equation (5.17) and the properties of the
ambiguity function of the position coding were reported in [92]. We will not proceed
further on this topic.
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54 WAVEFORM MODULATION AND AMBIGUITY REMOVAL

5.4.1 WAVEFORM MODULATION REDUCES RANGE AMBIGUITY

The current algorithms developed for removal of range and frequency
ambiguities are primarily involved with inter-pulse coding in either phase or time.
In this section, we will discuss the utilization of waveform modulation on
transmitted pulses to reduce range ambiguities. Furthermore, as shown later,
waveforn modulation can be combined with the covariance method discussed in

Chapter 4 to solve the frequency-ambiguity problem.

Waveform design has found many applications in radar and communication
systems. In radar systems, waveform design is often related to clutter rejection and
pulse compression. In communication systems, it is used in the area of spread
spectrum communications for code multiplexing [93 - 94].

The basic concept of waveforrn modulation for range-ambiguity reduction
can be illustrated in an example from code multiplexing in a communication
system. Waveform modulation allows two different signals to be transmitted in the
same bandwidth and time interval, and at the receiver, the two signals can be
separated by the process of correlation detection. This can be shown
mathematically: assume sj(t) and sa(t) are two different waveforms(or codes), and
s1(t) + salt) is the receiver input. For receiving signal s1(t), a reference signal sj(t) is
used at the receiver to correlate with the input signal. Let T be the signal integration
time, and the correlator’s output may be expressed as:

T
Y0 = [ (5100 + 5,05, ) it
0

T

=Tl j s?(t) dt +% J’ s, (tiso(t) dt (5.18)
o 0
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The first term in (5.18) is the signal output and the second term represents
interference from sa(t). The interference level is therefore determined by the cross

correlation of si(t) and sg(t). The usefulness of such a system is determined by the
cross correlation of the codes used. There are various coding techniques, such as
Barker codes, m-sequence, and random phase-coding. Most of these codes are able
to keep the sidelobe at the level of 1/N of the main lobe, with N is the total length of a
code [94].

Instead of using discrete coding (mostly binary), we may consider using
continuous waveform modulations. The main task is to find a set of continuous
waveforms with low cross correlations and study the effective SNR at the receiver.
One such candidate is linear frequency modulation (FM}), also known as chirp. For
example, two pulses modulated with different linear-FM waveforrns may have low
cross correlation. To simplify the following discussion, we consider waveforms
having the same time intervals and bandwidths. There may be many other linear
or non-linear FM waveforms with low cross correlations. However, the discussfon

of those waveforms is beyond the scope of this study.

Assume two Gaussian pulses u(t) and v{t) are modulated with conjugate linear
FM, namely the first pulse in the pair is modulated with up chirp and the second
with down chirp:
2,. 2

2 . 2
v(t) = (2a)1/4 gL - Jrat (5.20)

where (2a)}/4 i1s a constant to normalize the maximum value of the ambiguity
function to 1. The second assumption made is that the pulses are transmitted in
pairs spaced by a time interval T2. The transmitted pulse-pair train is expressed as
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N-1
y() = Zu(t -nTy) + v(t-nTy- Ty) (5.21).
n=0

At the receiver, there are two channels. One is matched to the signal u(t) and the
other is matched to v(t) as shown in Figure 5.8. The output from channel I and

channel II are given as correlations between the received signals and the impulse

A

U A

Channel I |alf—e""

response of the matched filter.

Match Filter
of Channel] |———

Match Filter
of Channel 11 -

Figure 5.8.. Configuration of dual-modulation receiver.

To examine the ocutput of each matched filter, we need to calculate the
ambiguity function and cross-ambiguity functions of the waveforms represented by
(5.21). In fact, the cross-ambiguity functions are the outputs of the matched filters.
The ambiguity function of such a pulse train can be calculated from the following
integral:
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= Agy(TO) + Xgy (T0)

Lga(T0) =Y

Tg (1) =

+o0

Xy (W) = J-y(t)y*(t + 1) dt

~-00

e 12neT, | xzuv(t - Ty

+ xzvu(t + T2.¢) e-j2n¢T2

The analytical forms of X5y Xzuv Xy and Xxyy are listed below.

derivation of these functions is included in Appendix 5.A.

 N-1

sin((N 'm)Tonq))
E e TRN-1-m)T g, (e-mTo ) G o)

m=-(N-1)
when l ©mT, I <8

\0 elsewhere

 N-1

sin((N-m)Tm¢)
E e TRN-1-meTox, (-mTo ) — et oy

m=-(N-1)
when l ©-mT,, | <38

\.0 elsewhere
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A detailed



 N-1

sin((N-m)Tn)
E e-]n(N— 1 —m)leOxvu(T"mTO’m W

m=-(N-1)

(14) =
Xgyu(™®) when I ©mT, | <8

.0 elsewhere
 N-1
sin((N-m)TOTtd))
E ¢ RN=-1-m)¢Tpx,, (t-mT,0) sin(nT0)
xZuv(T@) =9 m=-(N-1)

when l 'c-mTO | <38

\.0 elsewhere
Also from appendix 5.A we obtain

2
. 2 (at+d)
Xu(m’): ep:td) e-n/2(a1: Y )

(5.23)
2
. 2  (at-¢)
1, (10) = JTT0 e—n/2(ar +— ) (5.24)
a_ Zeais+ _192_) -iE (-at? -2t + Ap—)
xuv('r,¢)=‘\/a Tja €2 a2+ gl €2 a2e 2 625
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2 2
a_ = (-at2 + a9 ) B (-at2 + 201 + _oup__)
Ty (T0) = \/ il 2,422 2,2 (526

The outputs from channel I and II are the cross correlations:

channel I xzu(r,cb) + xzuvh -To) (5.27)
channel II: xzv(t,dw) + x):vu(-c + T2.¢) {5.28)

In equations (5.27) and (5.28), the first terms represent the signal outputs
from the matched filters and the second terms represent interference. The
ambiguity functions and cross-ambiguity functions given in equation (5.27) and
(5.28) are plotted in 3D drawings in Figures 5.9 and 5.10. It can be observed that the
energy levels of the interference at each channel are much lower than that of the
main lobe. In fact, it can be shown that the interference levels are approximately
equal to the inverse of the time-bandwidth (BT) products of the waveforms.

For a single target, the effective ratio of signal and interference can be
calculated by the following equation:

2
X (0,0) 2. 2
Zu - a“+a (5.29)
x:uv(o-o) a2

We are going to prove that the above expression is equal to the time bandwidth
product of a pulse. Let the chirped pulse width be 8. The bandwidth then is
approximately equal to af, and the time bandwidth product, BT, is equal to

BT =6 0d
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The parameter a and the pulse width § are related as follows

1

a=—F

82

If we substitute these equations into (5.29), the effective signal to interference ratio

becomes

2
ara” ., em2=sT

Equation (5.30) above shows that the effective SNR for a single target is
determined by the time bandwidth product of the FM modulated signal. By choosing
large time bandwidth products for the transmitted pulses, we can reduce the
interference level to an arbitrarily small value.

lxo)

Figure 5.9. Ambiguity function of dual linear FM modulated pulse
train. T2 = 0.3 T}, time bandwidth product = 10.0
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Figure 5.10. Cross ambiguity functions, a) as an output of channel I,
b) as an output of channel II.
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However, in weather radar the target is always spread. The above
calculation of effective SNR cannot be used for a spread target. The interference can
be calculated from equation (5.3). However, from observing the plot in Figure 5.10,
the domain of integration can be simplified to the area represented by the product of
the time duration (T2-8 ,T2+3) and frequency interval 7(7-°°,+°°) Since echoes only
from this area can contribute to the interference. Denote C as the voltage output of
the total interference, it can be shown that (Appendix 5.A):

C= | | %,.,(t-T2,9) dido
To-8 = Y
2a
=Vaia {5.31)
Therefore, the effective signal to interference ratio is equal to
S IX(0,0)|2_ Vaz+a2_ﬂ 5.32)

2T 2 2a -2

In calculating the spread target interference, we made the assumption that the
refelectivity of the distributed target in the integral domain is constant.

5.4.2 AN APPLICATION

a) In the waveform discussed in the previous section, each pulse in a pulse-
pair is transmitted with the same carrler frequency, same bandwidth, and same
envelope but opposite slopes of linear FM. Because the two pulses are transmitted
with the same carrier frequency, the coherency of the returned signals from the two
pulses in a pulse-pair is guaranteed if these signals are returned from the same
resolution volume, The covariance method can be used to estimate the mean
frequency from each pulse-pair. As discussed in chapter 4, the covariance method
does not depend upon the inter-spacing between two adjacent pulse pairs.
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Since the maxdimum unambiguous frequency only depends upon the length
of T2 and the maxdmum unambiguous range only depends upon the length of T +
T2, the lengths of T1 and T can be adjusted to achieve a desired unambiguous
frequency and range. Although the plot of the ambiguity function shows that this
scheme cannot remove the peaks of the frequency ambiguities, we can still use this
scheme to get the correct mean frequency of the spectrum. As the two pulses in one
pulse pair are in the same bandwidth and have the same carrier frequency, the

echoes from the two pulses can be coherent if the transmitted pulses are coherent.
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Figure 5.11. Simulation of waveform modulation method for
estimating first moment with extended frequency range, with one
run, 6=0.3, SNR=10 dB.

In summary, the waveform modulation allows us to achieve high signal to
interference mtioé and to obtain coherence between the pulses. The radar echoes
from the two pulses in a pulse-pair are separated through two matched filters. The
frequency ambiguity is reduced by the pulse pair method with two PRT's (T} and T2).
A computer simulation of this algorithm is presented in Figure 5.11 (with
measurements as a function of mean frequency). This figure shows that the
waveform modulation method produces smaller errors in estimation than the
STAGGER-B method.
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STAGGER-B method.

b) Furthermore, we can combine a) with the inter-pulse coding method. For
example, we can code the pulse train with a random binary phase coding: each pulse
pair is multiplied by a random binary phase either O or n. One such an example is
given in Figure 5.12. By comparing Figure 5.12 and Figure 5.9, we can see that the
peaks of the range ambiguities are further reduced by the random phase coding.
More important is the fact that the spectrum of the interference is flattened. This
can reduce bias in our estimate of the mean frequency. However, one needs to notice
that the eflective signal-to-interference ratio is not being reduced by the random
phase coding, only the spectrum of the interference is flattened.

lxt.0)]

Figure 5.12. Ambiguity function for the same pulse train as in Figure
5.10, except random phase coding was applied.

5.5 RESULTS AND CONCLUSIONS

5.5.1 THE SIMULATOR

Two simulators were used in this chapter. One simulator written in C
language was used to study the ambiguity functions for the dfferent algorithms

discussed This simulator allows the user to specify parameters such as the pulse
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length, pulse repetition time (PRT), type of inter-pulse coding, and number of pulses
in the pulse train, etc. The resulting ambiguity functions are plotted with 3-D
hidden-line drawings on the computer screen. The second simulator is similar to
the one used in Chapter 4. This simulator is used for Monte Carlo simulations of the
algorithms discussed in this chapter, with specified parameters such as SNR,
number of runs, spectral width of the signals, etc.

5.5.2 MONTE CARLO SIMULATION

Monte Carlo simulations have been used to compare the performance of the
three algorithms discussed in this chapter: STAGGERED PRF-A, STAGGERED PRF-
B and waveform modulation methods. As in Chapter 4, the results are presented
with RMS errors as functions of SNR, spectral widths of the signals, and mean

frequencies of the signals.

The data used in the simulations were generated with Gaussian shaped
spectral density functions with different SNRs and spectral widths. In the
simulations of the staggered PRF-A method, two different PRF's were used with a
ratio of F1:F2=7:8. In the simulations of staggered PRF-B method, two PRT's were
chosen with the ratio of T9:T1=7:8. In the simulations of the waveform-modulation
method, the ratio of inter-spacing of the two pulses in a pulse pair and the spacing
between pulse-pairs is chosen to be 1:7. All the three estimators should have

unambiguous frequency ranges as large as seven times the Nyquist interval.

All the computer simulations are based on the normalized Nyquist
frequency interval defined as {-1,1]. The mean frequencies of the input data change
from -5 to 5 wifh specified steps. This frequency range is 5 times the Nyquist
frequency. Figures 5.14 to 5.16 illustrate the Monte Carlo simulations of the RMS
errors as functions of the SNR and mean frequency. Figures 5.17 to 5.19 show the
Monte Carlo simulations of the RMS errors as functions of spectral widths of the
input data and SNRs. From these results, we can draw the conclusion that the
STAGGERED PRF-A method produces the smallest RMS errors, followed by the
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waveform-modulation method. The STAGGERED PRF-B method procduces RMS
errors which are approximately an order of magnitude larger than those of the
STAGGERED PRF-A method.

However, the STAGGERED PRF-A method is not without its disadvantages.

When the spectral width of the signal is large compared with the Nyquist frequency
(o/fn > 0.3), the STAGGERED PRF-A method produces a significant number of false

correlations as shown in Figure 5.16a. The RMS errors produced by the waveform-

modulation method do not change very much as the spectral width of the data
changes.

- 141 -



PDF of Faise Estimate

0.20 +
—a— 5dBSNR
——
0.15 - 10dB SNR
0.10 -
0.05 4
0.00 ' .
-6 -4 -2 o] 2 4 6
Mean Frequency (Hz)
a)
wn o
~ A\l
- =
8 8_ —— 0dB SNR
~ © | —e— 5dBSNR
:',g P 8_ —a— 10dB SNR
s~ T o
s < |
-~ o
w ~ 8-
2
N
T o S -
o
e g ] b 1 o ] v 1 M T A 1

-6.0 -4.0 -2.0 0.0 2.0 4.0 6.0
-10500 -7000 -3500 0 3500 7000 10500

Mean Frequency (Hz)
b)

Figure 5.13. Monte Carlo simulation of STAGGERED PRF-A method

with 100 runs, 6=0.3, number of pulse pairs = 128; a} probability of
false estimate; b) RMS error as a function of frequency and SNR.
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553 CONCLUSION

Among the algorithms discussed in this chapter, the staggered PRF-A
produces the smallest RMS errors of these three algorithms when the spectral width
is less than 0.3. The staggered PRF-B method produces the largest RMS errors
among these algorithms. For all these algorithms, the RMS errors increased as the
SNRs decreased. For the staggered PRF-A and PRF-B methods, the RMS errors also
increased as the spectral widths increased. In the computer simulation, for the
waveform modulation method, the RMS errors did not change very much as the the

spectral widths of the radar signals increased.

In the RAWS system, the spectral widths of the radar echoes are about half of
the Nyquist interval. In such a case, the PRF-A method has very large probability of
false measurements, about 20% at 10 dB SNR and 30% at 5 dB SNR. The RMS errors
produced by the waveform modulation are about 7% of the Nyquist interval at 10 dB
SNR, and about 12% at 5 dB SNR. The staggered PRF-B method generates too large
RMS errors to be used in this system. Assume that the PRF is 3500 Hz. Then the
Nyquist interval is 1750 Hz. Therefore, the waveform modulation method will
generate about 122 Hz RMS errors in the estimates of mean frequencies at 10 dB
SNR, and about 210 Hz at 5 dB SNR.
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APPENDIX 5.A AMBIGUITY FUNCTION FOR WAVEFORM MODULATION

To derive the ambiguity function for the waveform modulation method, we
first need to review some basic formulas often used in deriving ambiguity functions

and the ambigmty functions for some simple waveforms and pulse trains.

BASIC FORMULAS
+co '
2 ,—
Je'st dt = Ts_t. (5.33)
-00
2 2
F(eSt) = fzsg o0 /48 (5.34)
+o00 5 2
[e@t” +2B0 gy _ ,2 /e (5.35)
-00
+00
J- eijZn:xa(x-b) dx = S(a(x-b)) (5.36)
=00
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AMBIGUITY FUNCTIONS FOR A SINGLE PULSE

RECTANGULAR PULSE

For a rectangular pulse,
1 t
u(t) = ——=rect (5)
Vs

The ambiguity function for a rectangular pulse is given in the following form:

+o00
xu(wb) = JU(t) u'(t+1) e'iznq)t dt
_00
+8/2
= ,[U(t) u’(t+1:) e J2mét
8/2
T\ jmet (& It Dsin(rpd-11 1)
(1) = “’“(zs)"] ( o311 )I:Isa
u' v
0 elsewhere (5.37)
INGL. RE

For an FM rectangular pulse,
1 t) jro?
u(t) = —=rect (5) "
B

The ambiguity function is
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= <\ jnor (S=I1 Dsin(n(at+)(- 11 1))
X, (T9) = rect(zs)e’ ( 1D (asee)

) (5.38)

AMBIGUITY FUNCTION FOR SINGLE FM GAUSSIAN PULSE

For a Gaussian pulse

2, .2
ult) = (2a)1/4 o Tat” + jrot

The ambiguity function is

2
] 2 (at+d)
1, (00) = Ry e—n/2(a‘r + )

AMBIGUITY FUNCTION FOR A PULSE TRAIN

Assume
N-1

y(t) = Z u(t- nTy) (5.41)
n=0

The ambiguity function for a pulse train is defined as

+o0
N-1 N-1
xy(m) = Z u(t - nT) 2 u'(t- kT + 1) 2ot 4,
n=0 k=0
o0

Assume Ty > 235, if lt-mTOI <$
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(5.42)



+00

N-1 ]
Xy(t,(b) = J Zu(t - nTO) u(t-(n+ m)TO +71) e’)21t¢l dt
n=0

o0

N-1
+o00
= J.u(t -nTy) u(t-(n+m) Ty+1) o i2mbt 4
_oo
n=0
N-1
= %, (t-mTy ) Y ei2nmeTy
n=0

' sin(N-m)Txd)
_ ('N_‘l_m)T ¢ ,—O_
=%, (t-mT, ¢) & 0 sin(rT0)

If |t +mTy| <8

+o00
N-l *» .
Xy(t,¢) = Zu(t -nTg u (t-(n-m)Tj+1) o2t 4,

n=)
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+00

N-1
= J.u(t -nTy) u(t-(n-m) Ty+ 1) e I2mdt 4
n=0
)
N-1
= x,(t+mT, ¢) Y e2nneT,
n=0

. sin({(N-m)T,n¢)
= N-1+m)To¢p __—  ~ 07
=xu(t+mT,, ¢) & 0 SIRRTg9) (5.44)

So, the ambiguity function for a pulse train is
r N-1
: : sin((N-m)TOJtcb)
e-]n(N" l—m)¢T0xu(T-mT0,¢) si n(1|:T0¢)

X, (68 =) m=-(N-1)

BI AL WA

Assume that y(t) is the sum of two different waveforms u(t) and v(t) where v{t)

lags u(t) by T. The ambiguity function of y(t) can be written as:
+oo

X, (5.0) = [ + v (e + vite - T+ 1) €320 g
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=Xy (00 + Xy (T-To0) + %y, (T + T.0) 12T Ly ) 2T (5.46)

Similarly, we can derive the ambiguity function of a pulse pair train. Assume that
the pulse train can be represented as:

N-1
y(t) = Zu(t - nTl) +v(t-nT;-Ty) (5.47)

n=0

where Ty <T; and twice the pulse duration 23 <Ty. Thus, the ambiguity function is

defined as

+o00

Xy (o) = Jy(t)y*(t + 1) dt

o0

+o0

N-1 N-1 . '
2 X ju(t-nTl)u (t-kT+1) LT
n=0 k=0

o0

+00

N-1 N-1 , '
+X X J.u(t-nTl)v (t-kT;-To+ 1) e'lz’t‘“ dt
n=0 k=0

o0

+00

N-1 N-1 ) '
+ Y X J.v(t-nTl-Tz)u (t-kT1+ ) e-)2n¢t dt
n=0 k=0

o0
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+00

N-1 N-1 . '
+ 2 X V(t-nTl)v (t-le-T2+ (9] e-121t¢t dt
n=0 k=0

[o o]

= XZU(T,CP) + sz(Tvq’) e-j21t¢tT

24+ 45, (T - Ty )
+ xZVU(T + T2.¢) e'jznq)TZ (5.48)

In special cases, the pulses in a pair are linear FM modulated with an

opposite frequency modulation as shown below.

2, . 2
ult) = (2a)1/4 o Tl + jrat

2 .2
V() = (2a)1/4 Al - jrat (5.49)
Since v(t) = u‘(t) and from the properties of the ambiguity function, we know that [83]
%
Xy (00)=% (1, -0) (5.50)

so from (5.40), we can derive xv(t,cp),

(ar—g)z)
a

. 2
1, (T6) = 7% e""z(“ * (5.51)

The cross ambiguity xuv(t,q)) can be derived from the following integral:
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+o00

xuV(Tv‘w = Iu(t) V‘(t + ‘C)e-izn‘br dt

o0

+oo

f(Za)% e™ar joot? o T@-ja)t + t)ze'2n¢t dt

_oo
+00
1 s 2 omoet
= (2a)2 fe{-21t(a-ja)(t +t‘t+?)}e°] not 4t
_00
+o00
= (23)% o - e’ J. -2n(a - ]a)(t +(t +;]?—a)t) dt

oo

If we let a = 2n(a-jo) and B = nla-jolit + -J—-) by equation (5.35), the above integral is

equal to

2
— 2. ¢T(a-1a) -

(t.9) = \/ exp| (Gla-jo) (-t )

Zyy(T¢ a-jt P( ) 2+ a2 (a_ja)z)

“Vs; xp[‘(a )a){ 2 20" (@2 - a?)o?
\J a-ja a2 + 012 (a2 + a2)2
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JJ20at aa? H
2ra? @rod)?

!2 2
- / a e'g (a1:2+ 2a 2) e-jg(-atz-2¢1: + 2(1 2) (5.52)
a-jo a“+a a“+a ’

L 3
As u(t) = v'(t). it can be shown that xuv('c,q)] = Xyyu(%9). It follows that

2
a__ T2 L)
Xy (09) = \ja+jae2 al+ ol

2
J, 2 ad
812_( at” + 2¢T + a2+ az) (5.53)
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FE IGNAL-TO-I E

The total interference at the output of a matched filter can be approximately

calculated as:

+§+oo

= g I xuv(tl¢) d1d¢
o0

5+ n 2 a+ija .2
_ A /L_ -5] (a-ja)t™- j2¢41 +-—-]—¢ ]
- a-jou _£ o-[,e 2 a2+ a2 drd¢
, _—(a ]a)‘: j e 5[ 20t + —1—¢2]d¢dt
a-jou g
2 2
a“+a” 2
A / -—(a-]a)‘: '\/2(3 +gf) ZmL O,
a-jo a+ja €2 a+jo © dt

+5 o
=v2a J- e-n(a - jo)r de
)

2a
= \f ;;j; (5.54)
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Chapter 6

Conclusions and Recommendations for
Future Work

The major focus of this research was a system study of a Doppler radar used
for global wind measurements. In addition to studying cloud modeling and the
system configuration, such as antenna scan pattern, we discussed algorithms for
estimating the first moment of power spectra of radar signals, and algorithms for
reducing frequency and range ambiguities of Doppler radar systems. The results can

be summarized as follows:

(1) In Chapter 2 we reviewed volume backscattering of radar echoes from
clouds. For three different types of cloud, we stmulated the SNRs of the radar
echoes. The results demonstrated that, from the SNR point of view, frequencies of 35
GHz or higher are needed to obtain high enough SNRs of radar echoes from these
types of clouds, presuming the radar system has enough power and enough gain of
the antenna. Although the results were based only on water-cloud models, ice
clouds tend to have larger reflectivity than water clouds. The SNRs from ice clouds
~ will be larger than those from the water clouds with the same system parameters.
However, in the computer simulations, the cloud models were based on an
analytical drop-size distribution formula, and these drop-size distributions may be
quite different from the drop-size distributions found in practice. Therefore, more
realistic cloud models may need to be developed in future study.

(2) In Chapter 3, we discussed the system configuration of the radar wind
sounder. Three different antenna scan methods were discussed.and the result
revealed that a combination of uniform and discrete antenna scanning would result
in acceptable pointing errors and cost. We also discussed a tracking method to
estimate the Doppler frequency shift caused by satellite motion. The tracking is
through a combination of satellite inertial navigation system and a second-order

phase-lock-loop. The result of a computer simulation with a step input function
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showed that for given antenna pointing errors, and parameters of the phase-lock-
loop, this method can achieve very small RMS errors (several Hertz) in a steady
state. However, the simulation was crude since the clutter echoes used as the input
signal of the tracking system may be much different from the input signal used in
the simulation. More thorough analysis of the tracking system and more accurate
models of the tracking systern and input signal need to be developed in future study
of RAWS. In addition, different tracking methods, such as a Kalman filter, may also
need to be considered in the future study.

(3) We also conducted an error analysis in Chapfer 3. and the result showed
that error caused by satellite pointing angle is an important factor to the system
performance. To achieve the required accuracy (1m s°1), a large number of
independent measurements needs to be averaged. The error analysis was based upon
the error in measurement of the mean Doppler frequency and estimate of the
Doppler shift caused by satellite motion. However, these estimate errors and
measurement errors are usually functions of the SNR of the received signal. An
error analysis concerning SNRs of the system may need to be performed in the
future study.

We also pointed out in Chapter 3 that clutter rejection is an Important issue
in the design of RAWS. However, in this dissertation we did not discuss this
problem. This topic should be left as a topic of future study.

(4) In Chapter 4, we discussed several algorithms for estimating the mean
Doppler frequency: the FFT estimator, the covariance estimator, and the
estimators based on autoregressive models. The covariance estimator produced
slightly smaller RMS errors than the FFT estimator and the autoregressive-model-
based estimators in the computer simulations. However, these results were derived
under the condition that the power spectrum of the radar echo is symmetric and has
only one peak. In practice, interference caused by leakage from the transmitter, or
clutter, may cause the returned signals to have non-symmetric spectrum or
spectrum with more than one peak.
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The performance of the FFT estimator and the AR-based estimators are
affected by the noise and alias of the frequency of the radar echoes. A noise-
suppression method was discussed in this chapter. It can effectively remove the bias
caused by white noise. We also discussed a method for removing the bias caused by
frequency alias; this method can also reduce the bias caused by noise.

The FFT, the covariance estimator, and the AR estimator are comparable in
terms of estimate errors. Although, the RMS errors in the estimates depend on both
the spectral widths and SNRs of the input signals. The RMS error is mainly a
function of the spectral width of the signal when the SNR is above 5 dB. As
discussed, the spectral widths of the signals in RAWS are about half of the Nyquist
interval. In such case, the RMS errors produced by these estimators discussed in
Chapter 4 were as large as 10% of the Nyquist frequency. That is, for a 3500-Hz PRF,
the RMS errors are around 175 Hz. This error is higher than the error limit (23 Hz)
for the mean frequency estimates needed to produce the 1m s*1 accuracy in wind
estimates. About 64 independent measurements may need to be averaged to achieve

the required accuracy.

(6) In Chapter 5, we reviewed several algorithms for reducing the radar
ambiguities, such as a phase-coding method and staggered prf methods. However,
these methods do not perform well when the spectral widths of the radar echoes are
large ( > 50% of the Nyquist interval). Therefore, a new method based on using
different waveform modulations on successive transmitted pulses was developed to
reduce the radar ambiguities. Monte-Carlo simulations were used to compare the
performance of this method with two staggered-prf methods. The results showed
that when the spectral width of the signal increases, the RMS errors increase
rapidly with the staggered-prf methods. However, the RMS error for the waveform
modulation method does not change very much as the the spectral width of the

radar signal increases.

In the RAWS system, the spectral widths of the radar echoes are about half of
the Nyquist interval. In such a case, the staggered PRF-A method has very large
probability of false measurements; about 20% at 10 dB SNR and 30% at 5 dB SNR.
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The RMS errors produced by the waveform modulation are about 7% of the Nyquist
interval at 10 dB SNR, and about 12% at 5 dB SNR. The staggered PRF-B method
generates very large RMS errors, over 50% of the Nyquist interval, when the
spectral width is equal to or greater than half of the Nyquist interval. In all these
computer simulations, the extended maximum unambiguous frequency is 7 times as
large as the Nyquist interval. For a 3500-Hz prf, the maximum unambiguous
frequency is 12250 Hz. In summary, the waveform modulation method is the most
promising algorithm among the algorithms discussed in this chapter to be used in
the RAWS for estimating the Doppler mean frequﬁerncy'.
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